• Title/Summary/Keyword: Groove size

Search Result 130, Processing Time 0.03 seconds

Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove (완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가)

  • Shin, Jae-Myung;Han, Seung-Ho;Han, Dong-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

Micro Groove Cutting of Glass Using Abrasive Jet Machining (Abrsive Jet Machining을 이용한 유리의 미세 홈 가공)

  • 최종순;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF

Improvement of Performance Instability and Miniaturization of Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 불안정성능개선 및 소형화에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • The ratio of disk friction loss in a centrifugal pump is very large for the total pump loss in the range of very low specific speed. Therefore, impeller radius should be shortened to increase the pump efficiency because the disk friction loss is proportional to the fifth power of impeller radius. In order to compensate the decreased head by the shortened impeller radius, vane angle at impeller outlet should be increased. However, as the vane angle at impeller outlet becomes larger, performance instability occurs at low flow rate regions. In this study, J-Groove is adopted to suppress the performance instability and detailed examination is performed for the influence of the J-Groove on the pump performance. The results show that J-Groove gives good effect on the suppression of performance instability. Moreover, as J-Groove increases pump head considerably, the pump size can be smaller for head requirements.

Genetic Algorithm Based Design of Beep Groove Ball Bearing for High-Load Capacity (유전자 알고리즘을 이용한 깊은 홈 볼 베어링의 고부하용량 설계)

  • 윤기찬;조영석;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • This paper suggests a method to design the deep groove ball bearing for high-load capacity by using a genetic algorithm. The design problem of ball bearings is a typical discrete/continuous optimization problem because the deep groove ball bearing has discrete variables, such as ball size and number of balls. Thus, a genetic algorithm is employed to find the optimum values from a set of discrete design variables. The ranking process is proposed to effectively deal with the constraints in genetic algorithm. Results obtained fer several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increase about 9~34% compared with the standard ones.

  • PDF

A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint (T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구)

  • Bang, Han-Seo;Kim, Jong-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Effects of Reduction Groove Angle on Strength Characteristics of FCAW Weldment (FCAW 용접부 개선각 축소에 따른 강도특성)

  • Lee, Sang-Chul;Jo, Sung Woo;Yang, Jong Soo;Choi, Kyu Won;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.473-481
    • /
    • 2016
  • Thick plate is currently widely used in shipbuilding due to the increasing of size of ships. However, its use has increased welding groove angles and volume. The welder's technique must be good enough to improve productivity while preventing defects. Generally, the groove angle can be reduced to less than a flux-cored arc welding (FCAW) machine setting of $35{\pm}5^{\circ}$, requiring fewer welding passes while maintaining high productivity and reduced heat input. Therefore, welding technique can be prevented by improved mechanical properties and welding deformation. Welding defects such as lack of fusion (LF), lack of penetration (LP) and hot cracking should be considered when reducing the groove angle for related applications. In this study, a welding groove angle of $25{\pm}5^{\circ}$ is verified as suitable for FCAW design and fabrication. The experimental results confirm the effects on the strength characteristics of FCAW weldment when reducing groove angle to improve the productivity of shipbuilding industries.

Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current (실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과)

  • Yeon, Chang Bong;Lee, Yoo Jeong;Lim, Jung Wook;Yun, Sun Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

Normalization of DBTT Size Effect far Aged 1Cr-lMo-0.25V Steel (열화된 1Cr-1Mo-0.25V강의 DBTT 크기효과 보정에 관한 연구)

  • Nam, Seung-Hun;Kim, Eom-Gi;Lee, Dae-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2109-2115
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior when it is difficult to sample the material enough for the test. In this study, two kinds of miniaturized Charpy impact specimens(i.e., miniaturized specimen with side groove and without side groove) of aged 1Cr- lMo-0.25V steel were prepared and tested. The relationship between the extent of degradation in terms of ductile brittle transition temperature(DBTT) and the fracture stress of 1Cr-1Mo-0.25V steel was established. The fracture stress obtained from miniaturized specimen without side groove turned out to be linearly related with the DBTT of standard specimen. Therefore the fracture toughness of aged turbine rotor steel might be evaluated by the fracture stress. In addition, the correlation between DBTT of standard specimen and that of miniaturized specimen was investigated. As the results of normalizing DBTT by maximum elastic tensile stress, the normalized DBTT of miniaturized specimen without side groove allows one to estimate that of standard specimen.

Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate (연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석)

  • Bae Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.

Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs) (저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Kim, Sa-Wong;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF