• 제목/요약/키워드: Gripper

검색결과 209건 처리시간 0.029초

Robot manipulation using electro-magnetic levitation system

  • Fujino, Yoshikazu;Motomatsu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.396-399
    • /
    • 1994
  • In a large class of industrial robot manipulators, its end effector for supporting the moving object have designed with mechanical suspension method(gripper). In this paper, We describe a high performance magnetically levitated end effector of robot, where is no mechanical contact and friction.

  • PDF

Feature Extraction for Vision Based Micromanipulation

  • Jang, Min-Soo;Lee, Seok-Joo;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.41.5-41
    • /
    • 2002
  • This paper presents a feature extraction algorithm for vision-based micromanipulation. In order to guarantee of the accurate micromanipulation, most of micromanipulation systems use vision sensor. Vision data from an optical microscope or high magnification lens have vast information, however, characteristics of micro image such as emphasized contour, texture, and noise are make it difficult to apply macro image processing algorithms to micro image. Grasping points extraction is very important task in micromanipulation because inaccurate grasping points can cause breakdown of micro gripper or miss of micro objects. To solve those problems and extract grasping points for micromanipulation...

  • PDF

The teleautonomous control of an integrated FRHC-PUMA telerobot control system

  • Lee, Jin-S.;Kan, Edwin-P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.974-979
    • /
    • 1990
  • The system discussed in this paper is an integrated stand-alone system with the full functional capabilities required of a telerobot system. It is complete with a force-reflecting 6-DOF hand controller, driving a PUMA 560 or 762 robot, with an integrated force-torque sensing wrist sensor and servo-driven parallel jaw gripper. A mix of custom and standard electronics, distributed computers and microprocessors, with embedded and downloadable software, have been integrated into the system, giving rise to a powerful and flexible teleautonomous control system.

  • PDF

AE를 이용한 로봇그립퍼에서 접촉과 미끄러짐 감시 (Detection of Contact and Slip in Robot Grippers Using Acoustic Emission)

  • 최기상;최기흥
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1581-1589
    • /
    • 1995
  • The feasibility of using AE for detecting contact and slip between a workpiece and an end effector has been tested. Specifically, the relationship between the contact and slip motion and the characteristics of the AE signal is theoretically and experimentally investigated. The experimental results manifest that the high sensitivity of AE signal to the contact and slip makes it a good alternative as a robot tactile sensor.

Controlling robot by image-based visual servoing with stereo cameras

  • Fan, Jun-Min;Won, Sang-Chul
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.229-232
    • /
    • 2005
  • In this paper, an image-based "approach-align -grasp" visual servo control design is proposed for the problem of object grasping, which is based on the binocular stand-alone system. The basic idea consists of considering a vision system as a specific sensor dedicated a task and included in a control servo loop, and we perform automatic grasping follows the classical approach of splitting the task into preparation and execution stages. During the execution stage, once the image-based control modeling is established, the control task can be performed automatically. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories by using the Jacobian matrix, which is proved by the Lyapunov stability theory. And we also stress the importance of projective invariant object/gripper alignment. The alignment between two solids in 3-D projective space can be represented with view-invariant, more precisely; it can be easily mapped into an image set-point without any knowledge about the camera parameters. The main feature of this method is that the accuracy associated with the task to be performed is not affected by discrepancies between the Euclidean setups at preparation and at task execution stages. Then according to the projective alignment, the set point can be computed. The robot gripper will move to the desired position with the image-based control law. In this paper we adopt a constant Jacobian online. Such method describe herein integrate vision system, robotics and automatic control to achieve its goal, it overcomes disadvantages of discrepancies between the different Euclidean setups and proposes control law in binocular-stand vision case. The experimental simulation shows that such image-based approach is effective in performing the precise alignment between the robot end-effector and the object.

  • PDF

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석 (Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel)

  • 권영주;김재희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

기계시각을 이용한 육묘용 로봇 이식기의 개발 (Development of a Robotic Transplanter Using Machine Vision for Bedding Plants)

  • 류관희;김기영;이희환;한재성;황호준
    • 생물환경조절학회지
    • /
    • 제6권1호
    • /
    • pp.55-65
    • /
    • 1997
  • 본 연구는 육묘용 로봇 이식기를 개발하기 위한 목적으로 수행되었으며 그 결과는 다음과 같다. 1. 기계시각에 의한 결주 및 불량묘 판별은 72공 플러그묘판의 경우 98.8%, 128공의 플러그묘판의 경우 94.9%, 잎의 방향을 고려한 경우 72공의 플러그묘판의 경우 93.5%, 128공의 경우 91.0%의 정확도를 나타내었다. 2. 로봇 이식기의 기구부와 구동부를 개발하였고, 이를 제어하기 위한 제어기를 개발하였으며, 머니플레이터의 위치제어 정확도는 $\pm$ 1mm로 나타났다. 3. 잎의 방향을 고려하지 않은 이식방법에서의 이식성공률은 72공 플러그묘판의 경우 95.5%, 128공의 플러그묘판의 경우 94.5%로 나타났으며, 잎의 방향을 고려한 이식방법에서의 이식성공률은 72공의 경우 96.0%, 128공의 경우 95.0%로 나타났다.

  • PDF

케이블을 사용한 드론용 공중 포획 메커니즘의 설계 및 테스트 (Design and test of cable based airborne capture mechanism for drone)

  • 정상훈;응위엔 시;김병규;안태영
    • 항공우주시스템공학회지
    • /
    • 제14권3호
    • /
    • pp.10-16
    • /
    • 2020
  • 어망의 원리를 기반으로 케이블을 사용한, 드론에 탑재할 수 있는 포획 메커니즘을 제안하였다. 최근 제안되고 있는 드론용 포획장치로 주를 이루고 있는 그리퍼(Gripper) 메커니즘은 자중이 무겁고 정형화된 물건만을 잡을 수 있다는 한계를 가지고 있다. 본 논문에서 제안하는 포획 메커니즘은 가볍고, 유연하며, 원거리에서 다양한 형태의 물건을 포획할 수 있다. 케이블과 기구장치에 대한 역학관계를 이론적으로 분석하였으며 그에 따라 기구를 설계하고 모터와 제어기를 선정하였다. 최종적으로 포획장치를 제작하고 이를 검증하기 위해 드론(DJI S900)에 설치하여 다양한 형태의 물건에 대한 포획실험을 차례로 지상과 야외 환경에서 수행하여 타당성을 입증하였다.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.