• Title/Summary/Keyword: Grinding force

Search Result 232, Processing Time 0.025 seconds

Force-Reflecting Teleoperation for Grinding Work

  • Choo, Jung-Hoon;Lee, Jae-Yong;Lee, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.824-828
    • /
    • 2003
  • This paper explains problems of force-reflecting teleoperation grinding work and proposes some methods to solve those. For stable contact between robot tool(grindstone) and contact surface the mechanical impedance force control is used. The sliding phenomenon of grindstone has been appeared at the contact surface during the grinding work. The sliding problems caused by friction and rotation of grindstone are eliminated by using tangential direction sliding compensation control. The rotation force of grindstone makes the tool move to tangential direction along the surface suddenly even though an operator pushes the tool only in normal direction to the surface. Normal direction force control is applied for grinder not to roll and fracture on the grinding surface. Vibration problem of grindstone is decreased by second order low-pass filter. Therefore we can precise grinding work at the grinding surface and feel the reality

  • PDF

A Study on the Side-cut Grinding using the Mactining Center (MC를 이용한 측면 연삭에 관한 연구)

  • 김창수;서영일;정선환;이종찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.900-904
    • /
    • 1997
  • A problem in the grinding process using the machining center(MC) with a small diametric wheel is the machining error due to due to decrease of quill diameter. In this paper, a side-cut grinding is performed with a vitrified bonded CBN wheel by the MC, and the relation between grinding force and machining error for grinding conditions is investigated experimentally. It is show that the normal force has a significant effect on the machining error.

  • PDF

A Study on the Grinding of Titanium Alloy, Part2 : Grinding characteristics by using Superabrasives (티타늄 합금의 연삭에 관한 연구, Part2 : 초연마재를 사용한 연삭특성)

  • Kim, S. H.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1076-1079
    • /
    • 2001
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions. The grinding forces and grinding force ratio were measured to investigate the grindability of titanium alloy with the Diamond and CBN wheel. To investigate the grinding characteristics of titanium alloy grinding force ratio and grinding ratio were measured. Surface profile of wheel was also measured with tracer and the ground surfaces and chip were observed with SEM. Grinding-ratio of titanium alloy was much lower than that of other materials. Grinding-ratio of titanium alloy with Diamond wheel was almost six times larger than that with CBN wheel.

  • PDF

Grinding Characteristic Evaluation and Development of Response Surface Models in Surface Grinding Process (평면연삭에서 가공특성 평가 및 반응표면모델 개발)

  • Kwak Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.614-623
    • /
    • 2005
  • This study aims to perform the characteristic evaluation of surface grinding for the STD11 material with experimental and analytic techniques based on the response surface model. The grinding force acting on the workpiece and the ground surface roughness were measured according to the change of grain size, table speed and depth of cut. The effect of spark-out on the grinding force and the surface roughness was also characterized. The frictional coefficient between workpiece and grinding wheel could be determined by the analysis of spark-out effect. From the experimental data, the second-order response surface models were developed to predict the grinding force and the surface roughness. Validation of the developed model was examined.

The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding (측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상)

  • 김창수;서영일;이종찬;정성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

Grinding Characteristics of Ceramics for High Integrity (세라믹 재료의 고품위 연삭특성)

  • 양재용;곽재섭;하만경;윤문철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.336-339
    • /
    • 2001
  • In this study an experimental investigation was conducted to find the grinding characteristics of ceramics, as compared to STDll and SUS304 materials. The grinding force and the microscopic observation of the workpieces were obtained in surface grinding. It has been found that the grinding force of ceramics is relatively low as compared to that of steels and that CBN wheel has an excellent performance.

  • PDF

Grinding Wheel Life in Surface Grinding (평면연삭에서의 연삭수명 평가)

  • Choi, S.S.;Koo, Y.;Heo, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel gram affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, the grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the W A and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

  • PDF

Estimation and experimental verification of grinding wheel wear in surface grinding process (평면 연삭에서의 연삭 숫돌 마모 추정 및 실험적 검증)

  • 김현수;주광훈;홍성욱;이응숙;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper deals with the theoretical estimation and its experimental verification of grinding wheel wear in surface grinding process. A theoretical formulation is provided to predict the grinding wheel wear in surface grinding. The associated surface roughness and grinding force are also investigated both theoretically and experimentally. Through a series of simulations and experiments, it is shown that the predictions are in good agreement with the experimental results.

  • PDF

Variation of Grinding Force and Wheel Life in Surface Grinding (평면연삭에서 연삭력 변화와 숫돌수명)

  • Choi, Soung-Sam;Koo, Yang;Kwak, Jae-Seob;Ha, Man-Kyong;Park, No-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel grain affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, te grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the WA and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF