• Title/Summary/Keyword: Grill spectrometer

Search Result 4, Processing Time 0.018 seconds

Triply-Encoded Hadamard Transform Imaging Spectrometer using the Grill Spectrometer (그릴 분광계를 사용하여 3중 부호화한 하다마드 변환 영상 분광계)

  • Kwak, Dae-Yun;Park, Jin-Bae;Park, Yeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1527-1536
    • /
    • 1999
  • In this paper, a triply-encoded Hadamard transform imaging spectrometer is proposed by applying the grill spectrometer to the Hadamard transform imaging spectrometer. The proposed system encodes the input radiation triply ; once through the input image mask and twice through the two masks in the grill spectrometer. We use an electro-optical mask in the grill spectrometer which is controlled by a left-cyclic simplex matrix. Then we modeled the system using $D^{-1}$ method. In this paper, the average mean square error associated with a recovered estimate is considered for performance evaluation. The relative performance is compared with those of the other conventional systems.

  • PDF

A Study on Hadamard Transform Imaging Spectromers (하다마드 트랜스폼 이민징 스펙트로미터에 관한 연구)

  • Park, Jin-Bae;Kwak, Dae-Yeon;Jin, Seung-Hee;Joo, Jin-Man
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.571-579
    • /
    • 1999
  • In this paper, a Hadamard transform imaging spectrometer(HTIS) is proposed by using a grill spectrometer. And we reconfigure the system by using the grill sectrometer which uses a left cyclic S-matrix instead of the conventional right cyclic one. Then, we model the Hadamard transform imaging spectrometer and apply the mask characteristics compensation method, i.e. $ {T}^{-1}$ method, to complete fast algorithm. Also, through computer simulations the superiority of the proposed system in this paper to the conventional Hadamard transform spectrometer(HTS) is proved and the performance of the two systems are compared by introducing average mean square error(AMSE) as the algebraic criterion.

  • PDF

Triply Encoded Hadamard Transform Imaging Spectrometer: Spectrum Recovery Method (3번 부호화한 하다마드 변환 영상 분광계의 스펙트럼 복원법)

  • Park, Yeong-Jae;Seo, Ik-Su;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.597-599
    • /
    • 1999
  • Triply encoded HTIS(hadamard transform imaging spectrometer) is a system which applies the grill spectrometer to the HTIS. we consider a nonideality of mask transparent characteristic in estimating spectrum. Triply encoded system increases the SNR(signal to noise ration) by multiplexing effect. In this paper, we suggest an advanced $T^{-1}$ method for spectrum recovery. Then, we proved the superiority of the suggested method by comparing the average MSE(mean square error) of the other recovery methods.

  • PDF

The Effect of Roasting Temperature on the Formation of Volatile Compounds in Chinese-Style Pork Jerky

  • Chen, W.S.;Liu, D.C.;Chen, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.427-431
    • /
    • 2002
  • The purpose of this work was to study the effect of roasting temperature on the production of volatile compounds in Chinese-style pork jerky. The pork jerky was roasted by far-infrared grill at $150^{\circ}C$ or $200^{\circ}C$ for 5 min. The analysis of volatile compounds using a Likens-Nickerson apparatus coupled to a gas chromatograph and a mass spectrometer enabled us to identify 21 volatile compounds. The results showed that the volatile compounds coming from pork jerky can be divided into two groups in accordance with their possible origins. The first group of volatile compounds derived from oxidation of lipid included hexanal, ethylbenzene, nonanal, benzaldehyde, 2,4-decadienal, 1-octen-3-ol, octadecanal, and 9-octadecenal. The second group of volatile compounds generated from degradation of natural spices included 1,8-cinene, 4-terpineol, ${\alpha}$-terpineol, e-anethole, methyl-eugenol, panisaldehyde, elemol, eugenol, methyl-isoeugenol and myristicin. Significant differences (p<0.05) were found between 2 different roasted temperatures at levels for all volatile compounds.