• 제목/요약/키워드: Grid-connected inverter

검색결과 502건 처리시간 0.032초

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어 (The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter)

  • 박민기;이준민;홍주훈;김영석
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

SOGI를 이용한 단상 계통연계형 인버터의 데드타임 보상 (Dead time Compensation of Single-phase Grid-connected Inverter Using SOGI)

  • 성의석;이재석;황선환;김장목
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.166-174
    • /
    • 2017
  • This study proposes a compensation method for the dead-time effects on a single-phase grid-connected inverter. Dead time should be considered in the pulse-width modulation gating signals to prevent the simultaneous conduction of switching devices, considering that a switching device has a finite switching time. Consequently, the output current of the grid-connected inverter contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. The effects of dead time on output voltage and current are analyzed in this study. A new compensation algorithm based on second-order generalized integrator is also proposed to reduce the dead-time effect. Simulation and experimental results validate the effectiveness of the proposed compensation algorithm.

Improved DPC Strategy of Grid-connected Inverters under Unbalanced and Harmonic Grid Conditions

  • Shen, Yongbo;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.169-175
    • /
    • 2014
  • This paper presents an improved direct power control (DPC) strategy for grid-connected voltage source inverter (VSI) under unbalanced and harmonic grid voltage conditions. Based on the mathematic model of VSI with the negative sequence, 5th and 7th harmonic voltage components consideration, a PI controller is used in the proposed DPC strategy to achieve the average output power regulation. Furthermore, vector PI controller with the resonant frequency tuned at the two times and six times grid fundamental frequency is adopted to regulate both negative and harmonic components, and then two alternative targets of the balanced/sinusoidal current and smooth active/reactive output power can be achieved. Finally, simulation results based on MATLAB validate the availability of the proposed DPC strategy.

계통연계형 인버터의 왜곡된 계통전압에 의해 발생하는 전류고조파 저감방법 (Reduction Method of Harmonic Current by Distorted Grid Voltage in the Grid-connected Inverter)

  • 목형수;최규하;이정민;김상훈;지준근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.108-111
    • /
    • 2007
  • Phase angle in grid-connected inverter is important information for current control. When different loads are connected to PCC(Point of Common Coupling) of grid, distorted grid voltage is taken place by load utility generating distorted current. Especially, in case the grid voltage is distorted by low order frequency such as $3^{rd}$, $5^{th}$ harmonic, phase angle of PLL output is distorted. This paper analyze problem of current THD(Total Harmonic Distortion) due to distorted phase angle by distorted grid voltage, and propose control method compensating this problem. Also, it‘s validity is verified by simulation and experiment.

  • PDF

Voltage Distortion Approach for Output Filter Design for Off-Grid and Grid-Connected PWM Inverters

  • Husev, Oleksandr;Chub, Andrii;Romero-Cadaval, Enrique;Roncero-Clemente, Carlos;Vinnikov, Dmitri
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.278-287
    • /
    • 2015
  • This paper proposes a novel voltage distortion approach for output filter design based on the voltage transfer function for both off-grid and grid-connected Pulse Width Modulation (PWM) Inverters. The method explained in detail is compared to conventional methods. A comparative analysis is performed on an example of L and LCL-filter design. Simulation and experimental results for the off-grid and the grid-connected single phase inverter prove our theoretical predictions. It was found that conventional methods define redundant values of the output filter elements. Assumptions and limitations of the proposed approach are also discussed.

인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기 (Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation)

  • 이태진;조종민;신창훈;차한주
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

계통연계형 인버터의 전류제어기법 성능 비교 (Performance comparison study of current control methods for grid connected inverters)

  • 정호령;이재석
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.877-882
    • /
    • 2020
  • 본 논문에서는 계통연계형 인버터(Grid-connected inverter, GCI) 시스템을 위한 전류 제어 방법들의 성능 비교 연구를 제시한다. GCI 시스템을 위해 다양한 전류 제어 방법이 개발되었으며 각 제어기마다 장점과 한계를 가지고 있다. 본 논문에서는 GCI 전류 제어기들의 정상 상태 및 과도 상태에서의 동적 성능을 비교 분석한다. 제안한 전향보상기법(Command feedforward control, CFFC) 및 외란제거제어(Disturbance rejection control, DRC)가 모든 GCI 전류 제어기에 적용 전과 후의 성능을 비교 분석하였다. 제안된 CFFC와 DRC 제어 알고리즘을 주파수 영역에서 분석하고 성능 검증을 위해 각 GCI 전류 제어 방법들의 시뮬레이션 및 실험 모델을 개발하였다.

LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석 (Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter)

  • 조종민;이태진;윤동현;차한주
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

계통전압 관측기를 이용한 계통연계형 인버터의 예측전류제어 (Predictive Current Control of a Grid-Connected Inverter with Grid Voltage Observer)

  • 이귀준;현동석
    • 전력전자학회논문지
    • /
    • 제15권2호
    • /
    • pp.159-166
    • /
    • 2010
  • 분산전원을 계통에 연계하기 위해서는 전류제어가 필수적이며, 최근에 고성능 DSP(Digital Signal Processors)를 기반으로 빠른 동특성을 만족시키는 예측전류제어에 대한 연구가 활발히 진행되고 있다. 하지만 예측전류제어는 디지털 구현 시 발생하는 시지연, 파라미터 및 입력값의 오차, 노이즈에 의한 간섭으로 인해 제어 성능이 감소할 뿐만 아니라 시스템을 불안정하게 하는 단점을 갖고 있다. 따라서 본 논문은 계통연계형 인버터 응용에 있어서 계통전압 관측기를 이용한 예측전류제어를 제안한다. 전압 관측기 이득 선정을 위해, 계통전압에 존재하는 저차 고조파에 의한 영향을 고려하며, 필터 파라미터 오차에 의한 영향을 분석한다. 제안된 방법은 빠른 전류응답특성 뿐만 아니라, 전압센서를 사용하지 않음으로 인해 노이즈에 강인하며 시스템 구현이 간단하고 계통의 저차 고조파에 강인한 전류제어성능을 갖는다. 제안된 방법의 타당성은 시뮬레이션과 실험을 통하여 검증한다.