• 제목/요약/키워드: Grid segmentation

검색결과 46건 처리시간 0.028초

하이브리드 방법을 이용한 격자 패턴의 세그먼테이션 (The Grid Pattern Segmentation Using Hybrid Method)

  • 이경우;조성종;주기세
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.179-184
    • /
    • 2004
  • 본 논문은 하이브리드 방법을 사용하여 영상내의 체형 외곽 선과 격자 패턴을 추출하여 3차원 체형 데이터를 획득하기 위한 새로운 영상분할 알고리즘을 제안한다. 체형 외곽 선을 추출하기 위한 영상분할 방법으로 최대 값 인식 알고리즘을 사용하였다. 이 방법은 에지에서의 접선 방향 값은 작지만 법선 방향 값은 큰 성질을 이용하여 일정 영역내의 픽셀들간의 변화 값 중 최대 값을 인식하는 알고리즘이다. 그리고 체형 외곽내의 격자 패턴은 격자 패턴 검출 알고리즘을 사용하여 추출하였다. 추출된 체형 외곽 선과 격자 패턴을 결합한 후 휴리스틱 방법인 연속 길이 테스트에 치한 격자 패턴의 연결 및 잡음제거를 하였다. 본 논문에서 제안한 영상분할 방법은 기존의 기울기나 라플라시안 연산방법보다 매우 효과적인 결과를 가져 왔다.

Grid 방법을 이용한 측정 점데이터로부터의 CAD모델 생성에 관한 연구 (CAD Model Generation from Point Clouds using 3D Grid Method)

  • 우혁제;강의철;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2001
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.

  • PDF

다중스케일 노멀라이즈 컷을 이용한 영상분할 (Image Segmentation using Multi-scale Normalized Cut)

  • 이재현;이지은;박래홍
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.609-618
    • /
    • 2013
  • 본 논문은 기존 그래프 컷 기반 영상분할의 성능은 유지하면서 연산속도가 빠른 영상분할 방법을 제안한다. 기존 그래프 컷 기반 영상분할은 높은 성능을 보이지만 고유쌍 연산으로 인해 분할 속도가 느리다는 단점을 지닌다. 이는 고유쌍 연산에서 영상 내 모든 화소 사이의 유사도를 고려하여 정방행렬을 만들기 때문이다. 그러므로 제안하는 방법은 영상을 여러 영역으로 분할하여 작은 크기의 정방행렬을 구성하고 이를 통해 고유쌍 연산 속도를 크게 향상시킨다. 본 논문에서는 대수적 다중 격자를 이용한 다중스케일 영상분할법을 제안하고 실험 결과를 통해 제안하는 방법이 기존 영상분할 방법보다 그 성능이 더 우수함을 보인다.

V-PCC 부호화기의 그리드 기반 세그먼트 정제 고속화 (Fast Grid-Based Refine Segmentation on V-PCC encoder)

  • 김유라;김용환
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.265-268
    • /
    • 2022
  • Video-based Point Cloud Compression(V-PCC) 부호화기의 세그먼트 정제(Refining segmentation) 과정은 3D 세그먼트를 2D 패치 데이터로 효율적으로 변환하기 위한 V-PCC 부호화기의 핵심 파트이지만, 많은 연산량을 필요로 하는 모듈이다. 때문에 이미 TMC2 에 Fast Grid-based refine segmentation 과정이 구현되어 있으나, 아직도 세그먼트 정제 기술의 연산량은 매우 높은 편이다. 본 논문에서는 현재 TMC2 에 구현되어 있는 Fast Gridbased Refine Segmentation 을 살펴보고, 복셀(Voxel) 타입에 따른 특성에 맞춰 두 가지 조건을 추가하는 고속화 알고리즘을 제안한다. 실험 결과 압축성능(BD-BR)은 TMC2 와 거의 차이를 보이지 않았지만, 모듈 단위 평균 10% 연산량이 절감되는 것을 확인하였다.

  • PDF

Robust Extraction of Lean Tissue Contour From Beef Cut Surface Image

  • Heon Hwang;Lee, Y.K.;Y.r. Chen
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.780-791
    • /
    • 1996
  • A hybrid image processing system which automatically distinguished lean tissues in the image of a complex beef cut surface and generated the lean tissue contour has been developed. Because of the in homegeneous distribution and fuzzy pattern of fat and lean tissue on the beef cut, conventional image segmentation and contour generation algorithm suffer from a heavy computing requirement, algorithm complexity and poor robustness. The proposed system utilizes an artificial neural network enhance the robustness of processing. The system is composed of pre-network , network and post-network processing stages. At the pre-network stage, gray level images of beef cuts were segmented and resized to be adequate to the network input. Features such as fat and bone were enhanced and the enhanced input image was converted tot he grid pattern image, whose grid was formed as 4 X4 pixel size. at the network stage, the normalized gray value of each grid image was taken as the network input. Th pre-trained network generated the grid image output of the isolated lean tissue. A training scheme of the network and the separating performance were presented and analyzed. The developed hybrid system showed the feasibility of the human like robust object segmentation and contour generation for the complex , fuzzy and irregular image.

  • PDF

Ball Grid Array Solder Void Inspection Using Mask R-CNN

  • Kim, Seung Cheol;Jeon, Ho Jeong;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.126-130
    • /
    • 2021
  • The ball grid array is one of the packaging methods that used in high density printed circuit board. Solder void defects caused by voids in the solder ball during the BGA process do not directly affect the reliability of the product, but it may accelerate the aging of the device on the PCB layer or interface surface depending on its size or location. Void inspection is important because it is related in yields with products. The most important process in the optical inspection of solder void is the segmentation process of solder and void. However, there are several segmentation algorithms for the vision inspection, it is impossible to inspect all of images ideally. When X-Ray images with poor contrast and high level of noise become difficult to perform image processing for vision inspection in terms of software programming. This paper suggests the solution to deal with the suggested problem by means of using Mask R-CNN instead of digital image processing algorithm. Mask R-CNN model can be trained with images pre-processed to increase contrast or alleviate noises. With this process, it provides more efficient system about complex object segmentation than conventional system.

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

Twin models for high-resolution visual inspections

  • Seyedomid Sajedi;Kareem A. Eltouny;Xiao Liang
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.

라이다 포인트 클라우드에서 수목 및 건물의 외부 수직벽 포인트의 인식과 제거에 관한 연구 (A study on detecting trees and discriminating vertical building wall points from LIDAR point cloud)

  • 한수희;이정호;유기윤;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.179-182
    • /
    • 2007
  • In this study, we proposed a way to detect trees using virtual grid and to discriminate vertical wall points from building tops based on effective segmentation of LIDAR point cloud utilizing scan line characteristics. Trees were detected by their surface roughness value calculated based on virtual grid and vertical building wall points were discriminated from building tops with one dimensional filtering of scan line during segmenting point cloud. In results, we could distinguish trees from buildings and bind virtical wall points to prevent them from faltly acting on point segmentation process.

  • PDF

고역통과 필터를 이용한 그리드 패턴 영역분할 (Grid Pattern Segmentation Using High Pass Filter)

  • 주기세
    • 한국항행학회논문지
    • /
    • 제11권1호
    • /
    • pp.59-63
    • /
    • 2007
  • 본 논문은 윤곽선이 불분명한 상황에서 체형의 윤곽선과 신체 내부의 그리드 패턴들을 추출하기 위한 이미지 분할 알고리즘을 서술한다. 이미지 분할 방법은 문턱 값을 이용한 이진화 기법을 사용한다. 복잡한 형상을 지닌 물체의 3차원 정보를 추출하기 위한 노이즈 제거 알고리즘은 $3{\times}3$ 하이브리드 고역통과 필터 방법을 제안한다. 본 하이브리드 고역통과 필터 알고리즘은 노이즈 제거 시간이 기존 방법에 대하여 훨씬 단축되기 때문에 3차원 체형, CAD 시스템, 공장자동화와 같은 복잡한 형상을 지닌 물체의 3차원 정보를 추출하는데 적용할 수 있다.

  • PDF