This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.
최근 국내에서는 관로 노후화 및 다양한 수질사고 발생으로 인해 상수도 분야에 대한 관심이 급증함에 따라, 상수도 서비스에 대한 이용자들의 수질민원 또한 증가하고 있다. 수질민원의 경우 실제 수질오염뿐만 아니라 소독을 위한 잔류염소농도에 대한 불편을 포함하고 있으며, 따라서 사용자에게 공급되는 잔류염소농도를 균등하게 유지하기 위해 재염소 처리와 같은 다양한 노력이 시도되고 있다. 본 연구에서는 상수관망 내 잔류염소농도 모의를 위해 적용 대상지역의 수질반응계수를 추정하였으며, 수질기준을 만족시키는 동시에 잔류염소농도 균등화를 고려하기 위한 염소 투입 및 재투입 최적화 방법을 제안하였다. 제안된 방법은 국내 대규모 지방상수도를 대상으로 적용하였으며, 격자탐색법을 통해 다양한 염소 투입/재투입 계획을 비교 분석하고, 공급 잔류염소농도의 적합성 및 균등성을 중심으로 최적화한 결과를 제시하였다.
본 최근 기존의 모습과는 다른 고층건물의 형태가 대도시에서 랜드마크로서 주목을 끌고 있으며 혁신적인 건물형태에 대한 탐색은 건축분야에서 지속적으로 이루어질 것이다. 본 연구에서는 소규모의 구조체에 활용되고 있는 $Isotruss^{(R)}$ 그리드를 건물의 외주골조에 적용하여 구조적 성능을 검토하였다. 구조적 거동을 비교하기 위해 다이아그리드 구조시스템을 준거로 하였다. 동일한 규모의 16층, 32층, 48층 건물을 두가지의 구조시스템으로 설계하였다. 아이소트러스 그리드 구조 부재의 선정은 예비적 설계단계로 생각하여 다이아그리드의 강성에 기준한 설계방법을 이용하였다. 경사기둥의 각도로 아이소트러스 구조는 $59^{\circ}$, 다이아그리드 구조는 $68.2^{\circ}$로 하였다. 횡강성, 철골량, 외부골조의 횡력 부담비율, 기둥의 축력 강도비, 고유 진동수를 비교하였다. 6개의 건물 모델을 해석한 결과 두 구조시스템의 구조적 성능은 유사하나 외주골조의 횡하중 분담율이 아이소트러스 그리드 구조가 93.3%로 다이아그리드 구조의 88.7% 보다 약간 커서 코어 기둥의 배치에 있어 유리하다고 볼 수 있다. 따라서 본 연구에서 제안하는 아이소트러스 그리드 시스템은 입면형태가 독특할 뿐만 아니라 기존의 구조시스템과 동등한 구조적 성능을 보유한 것으로 보인다.
자연하천에서의 유사량 계측은 하천공학적으로 중요한 의미를 가지지만 계측 방법의 비용 문제로 유사량 실측에 어려움이 따른다. 특히 소류사량 계측의 어려움으로 인해 주기적인 유사량 모니터링의 대부분이 부유사 농도 계측에만 제한되어 있는 실정이다. 본 연구에는 자동유량관측소에 설치된 횡방향 도플러 유속계(H-ADCP)의 후방산란값과 부유사 농도의 상관관계를 이용해 실시간으로 부유사 농도를 산정하고 총유사량을 산정하는 서포트벡터회귀 모형을 제안한다. 제안하는 실시간 총유사량 모니터링 시스템은 부유사 농도 모형과 수정 아인슈타인 방법을 모사하는 총유사량 산정 모형으로 구성된다. 각 모형의 매개변수와 입력변수는 K겹 교차검증 기반 격자검색 방법과 재귀적 특징 제거법을 이용해 결정되었다. 교차검증에서 부유사 농도 모형과 총유사량 산정 모형의 R2가 각각 0.885와 0.860으로 유사량-유량 관계곡선에 비해 정확한 것으로 나타났다. 시계열 유사량 관측을 통해 새로 제시되는 실시간 총유사량 관측 시스템이 자연하천에서 발달하는 유사량-유량 이력관계와 미세한 유량 변화에서 나타나는 유사량 변화를 성공적으로 관측할 수 있음을 확인했다. 본 연구에서 제안하는 방법은 마찰경사나 부유사 입도 등의 수리 조건을 가정할 필요 없이 H-ADCP의 원시자료만으로 부유사 농도와 총유사량을 산정할 수 있어 기존 방법에 비해 불확도가 적으며 경제적이다. 본 방법은 H-ADCP가 설치된 유사량 관측소에 광범위하게 적용 가능해 유사량 모니터링의 시간적 해상도를 경제적으로 크게 줄일 수 있을 것으로 기대된다.
본 연구는 스캔라인 기반의 2차원 이웃 관계를 활용하여 레이블링 알고리즘과 윈도우 기반의 알고리즘을 함께 적용함으로써 항공레이저측량 자료의 지면점과 비지면점을 효과적으로 분리하는 것을 목적으로 한다. 이를 위하여 스캔라인 구조를 바탕으로 최소의 탐색을 통해 점들의 인접 관계를 구축하고, 구축된 인접관계를 기반으로 연결성분 레이블링 알고리즘을 적용하여 항공레이저측량 자료를 지면점과 비지면점으로 분리하였다. 그리고, 모폴로지 필터링을 통해 작은 개체를 추가로 제거하고 거리반비례 추정을 통해 고립 지면점을 복원하여 정확도를 향상시켰다. 다양한 특성을 나타내는 지역에 적용하고 평가한 결과 대부분의 점들이 올바르게 분리 되었고 약97%의 전체 정확도를 도출하였으며, 인접관계 구축 및 데이터 처리 시간이 TIN 또는 격자 구조 자료 구축시간에 비하여 적게 소요되었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권4호
/
pp.268-276
/
2015
A ship's sailing route or plan is determined by the master as the decision maker of the vessel, and depends on the characteristics of the navigational environment and the conditions of the ship. The trajectory, which appears as a result of the ship's navigation, is monitored and stored by a Vessel Traffic Service center, and is used for an analysis of the ship's navigational pattern and risk assessment within a particular area. However, such an analysis is performed in the same manner, despite the different navigational environments between coastal areas and the harbor limits. The navigational environment within the harbor limits changes rapidly owing to construction of the port facilities, dredging operations, and so on. In this study, a support vector machine was used for processing and modeling the trajectory data. A K-fold cross-validation and a grid search were used for selecting the optimal parameters. A complicated traffic route similar to the circumstances of the harbor limits was constructed for a validation of the model. A group of vessels was composed, each vessel of which was given various speed and course changes along a specified route. As a result of the machine learning, the optimal route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling method, we intend to support the decision-making of Vessel Traffic Service operators in terms of navigational patterns and their characteristics.
위치기반 서비스(Location-Based Service) 에서는 위치-기반 질의를 요청하는 사용자가 자신의 정확한 위치 정보를 데이터베이스 서버로 보내기 때문에, 사용자의 개인 정보가 상대방에게 노출될 수 있다. 따라서 사용자가 안전하게 위치기반 서비스를 사용할 수 있기 위해서는 개인 정보 보호 방법이 요구된다. 따라서 본 논문에서는 위치기반 서비스에서 개인정보 보호를 위한 새로운 클로킹(cloaking) 영역 생성 알고리즘을 제안한다. 제안하는 기법은 그리드를 이용하여 사용자가 요구하는 L개의 건물을 탐색한 후, K명의 사용자를 탐색하는 K-anonymity를 수행하여 최소 크기의 클로킹 영역을 생성한다. 이를 위해 그리드 기반의 색인 구조 및 효과적인 가지치기 방법을 사용한다. 마지막으로 성능평가를 통해 본 논문에서 제안하는 클로킹 영역 생성 알고리즘이 클로킹 영역의 크기 측면에서 기존의 연구보다 우수함을 보인다.
컴퓨터와 네트워크 기술의 향상은 예전에는 슈퍼컴퓨터에서나 가능한 일을 분산 처리할 수 있는 환경적 기반을 제공한다. 분산 컴퓨팅 환경을 제공하기 위해서는 우선 분산 런타임 시스템이 구축되어야 하는데 기존의 전통적인 분산 런타임 시스템들은 대부분이 정적인 마스터 노드와 작업 노드들로 구성되는 구조를 갖기 때문에 분산처리 작업량의 변동에 따라 시스템을 유연하게 동적으로 재구성할 수 없다는 단점을 갖는다. 이에 본 논문에서는 P2P 환경에서의 분산 런타임 시스템인 작업 할당 관리자의 모델을 제시하고 구현하여 유연하고 동적인 시스템 구축이 가능하도록 하였다. 즉, P2P 표준 프로토콜인 JXTA 플랫폼 상에서 협업 환경을 위해 개발자들 간에 작업 프로그램의 전달과 관리, 그리고 원격 컴파일과 실행 작업들을 수행할 수 있도록 하였다 이 방식은 유연하고 동적인 시스템 구축이 가능하기 때문에 작업의 분산처리를 위해 필요한 유휴 자원들을 필요한 시점에 즉시 확보하여 활용할 수 있다는 장점을 가진다. 이와 더불어 인터넷 정보검색을 위해 방대한 데이터를 수집하는 크롤러를 본 논문에서 구현한 시스템을 이용하여 분산 처리시킴으로써 본 시스템의 유용성과 분산처리 성능을 보여 줄 수 있도록 하였다.
관제구역 내 항로는 주요 항만의 항계를 포함하고 있기 때문에 지리적 여건에 따라 선박 통항량이 증가하고 항로가 협소한 구간이 존재한다. 또한, 대한민국 서해안에 위치한 항만과 그 관제구역의 경우 큰 조석간만의 차로 인하여 선박 조선에 있어 강한 조류의 영향을 받게 된다. 본 논문에서는 항로 상 조류의 흐름에 따른 선박 항적 이동의 특성을 분석하여 항해 환경 변화에 따른 유의미한 정보를 생산하는 방법을 제시하고 실제 해양 사고 사례에 적용하여 그 유효성을 검증하였다. 모델 추출을 위하여 SVR seaway model, 지지벡터 회귀 모형과 격자 탐색을 통한 모수 결정을 수행하였다.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.