• Title/Summary/Keyword: Grid inverter

Search Result 714, Processing Time 0.03 seconds

Anti-islanding Method by Harmonic Injection for Utility Interactive Inverter with Critical Load (중요부하를 갖는 계통연계형 인버터의 고조파주입에 의한 단독운전방지 기법)

  • Oh, Hyeong-Min;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • The utility-interactive inverter with critical loads should supply continuous and stable voltage to critical loads even during the grid fault. The conventional control method which performs current control for grid-connected mode and voltage control for stand-alone mode undergoes the critical load voltage variation during grid fault. The critical load voltage may have large transient when the inverter performs mode transfer after the islanding detection. Recently, the indirect current control method which does not have the transient state during not only islanding detection but also the mode transfer has been proposed. However, since the voltage control is maintained even during the grid-connected mode it is difficult to detect the islanding. This paper proposes an active anti-islanding method suitable for the indirect current control method which does not have NDZ(Non-Detection Zone).

Optimized LCL filter Design Method of Utility Interactive Inverter (계통연계형 인버터의 LCL필터 최적 설계기법)

  • Jung, Sang-Hyuk;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.

An active damping method of a grid-connected PWM Inverter using an instantaneous power theory (순시전력이론을 통한 계통연계 PWM 인버터 시스템의 능동댐핑 기법)

  • Jung, Hea-Gwang;Lee, Kyo-Beum;Kang, Sin-Il;Lee, Hyen-Young;Kwon, Oh-Joeng;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.85-87
    • /
    • 2008
  • The demand of a three phase PWM inverter for the purpose of power control or grid-connecting is increasing. This inverter is connected to a grid through an L-filter or LCL-filter to reduce the harmonics caused by switching. An LCL-filter can reduce the harmonic of a low switching frequency and generate a satisfactory level of grid side current with a relatively low-inductance than an L-filter. But the additional poles caused by the LC part affects a stability problem due to induced resonance of the system. This paper presents a compensation method using a power theory to improve performance, the designed LCL-filter system and to reduce the stability problems caused by resonance. The effectiveness of the proposed algorithm is verified by simulations.

  • PDF

The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter (계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어)

  • Park, Min-Gi;Lee, Joon-Min;Hong, Ju-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Dead time Compensation of Single-phase Grid-connected Inverter Using SOGI (SOGI를 이용한 단상 계통연계형 인버터의 데드타임 보상)

  • Seong, Ui-Seok;Lee, Jae-Suk;Hwang, Seon-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2017
  • This study proposes a compensation method for the dead-time effects on a single-phase grid-connected inverter. Dead time should be considered in the pulse-width modulation gating signals to prevent the simultaneous conduction of switching devices, considering that a switching device has a finite switching time. Consequently, the output current of the grid-connected inverter contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. The effects of dead time on output voltage and current are analyzed in this study. A new compensation algorithm based on second-order generalized integrator is also proposed to reduce the dead-time effect. Simulation and experimental results validate the effectiveness of the proposed compensation algorithm.

Inquiry of New Topology for Grid-connected Photovoltaic Inverter (PV용 계통연계형 인버터의 새로운 Topology 고찰)

  • 정영석;유권종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.248-251
    • /
    • 1999
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reverse margin in summer. As on of the remedies about this problem, the small scale grid-connected photovoltaic system is considered for auxiliary power source. Generally, grid-connected inverter have a isolation transformer for electrical isolation from utility. This paper propose transformerless system topology an inquiry the validity using simulation.

  • PDF

A Seamless Mode Transfer Scheme for Single Phase Inverter with ESSs (에너지저장장치를 갖는 단상인버터에서 매끄러운 모드절환을 위한 알고리즘 개발)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.579-586
    • /
    • 2013
  • This paper proposes a mode transition algorithm between the grid-tied and the stand-alone operations for the single-phase inverter with the energy storage system. For the grid-tied operation, the dc-link voltage and the output current are required to be control. For the stand-alone mode, both the output voltage and the output current should be regulated. In order to mitigate a falling-off in control performance during transients in mode change, the load power estimation and the current selection schemes are proposed. The proposed method allows an optimized current reference is selected to reduce an output voltage drop and an excessive over-current in transient. To verify the effectiveness of the proposed method, both the simulation and the experiments for a 3kW single-phase inverter with the energy storage system have been conducted. From the results, it has been confirmed that the proposed method reduces a transient error as well as implementing smooth mode transition.

Reactive Power Control Algorithm of Grid-Connected Inverter at the Point of Common Coupling With Compensation of Series and Parallel Impedances (직병렬 임피던스 보상을 통한 계통 연계 분산전원 인버터의 PCC 무효전력 제어 알고리즘)

  • Heo, Cheol-Young;Song, Seung-Ho;Kim, Yong-Rae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2022
  • Due to space and geographical constraints, the power source may be located outside the island area, resulting in the considerable length of transmission line. In these cases, when an active power is transmitted, unexpected reactive power is generated at a point of common coupling (PCC). Unlike the power transmitted from the power generation source, the reactive power adversely affects the system. This study proposes a new algorithm that controls reactive power at PCC. Causes of reactive power errors are separated into parallel and series components, which allows the algorithm to compensate the reactive current of the inverter output and control reactive power at the PCC through calculations from the impedance, voltage, and current. The proposed algorithm has economic advantages by controlling the reactive power with the inverter of the power source itself, and can flexibly control power against voltage and output variations. Through the simulation, the algorithm was verified by implementing a power source of 3 [kVA] capacity connected to the low voltage system and of 5 [MVA] capacity connected to the extra-high voltage system. Furthermore, a power source of 3 [kVA] capacity inverter is configured and connected to a mock grid, then confirmed through experiments.

Solar Inverter with Grid Power Generation

  • Suchitra Khoje;Govind Wanje;Ramesh Mali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.162-165
    • /
    • 2023
  • Power can be generated from either renewable or non-renewable sources. Renewable sources are liked to maintain a strategic distance from contamination emanation and rely on upon fossil energizes which is decreasing day by day. The proposed sun powered vitality transformation unit comprises of a sun oriented exhibit, Bidirectional DC-DC converter, single stage inverter and AC. The inverter changes over DC control from the PV board into AC power and offered it to the heap which is associated with the lattice. The photovoltaic sun powered vitality (PV) is the most direct approach to change over sunlight based radiation into power and depends on the photovoltaic impact. The most extreme power point following of the PV yield for all daylight conditions is a key to keep the yield control per unit cost low for fruitful PV applications. Framework associated PV frameworks dependably have an association with people in general power matrix by means of an appropriate inverter in light of the fact that a PV module conveys just dc power. This project presents the new design, Development and Performance Analysis of a Grid Connected PV Inverter. Demonstrate that the proposed framework can lessen the Energy Consumption radically from the power board and give a solid support to the Grid.