• Title/Summary/Keyword: Grid Removing

Search Result 44, Processing Time 0.035 seconds

Reducing Radiation Exposure During X-ray Imaging of Both Hip AP (엉덩관절 정면 검사 시 환자 피폭 감소)

  • Shin, Seong-Gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • This research has been conducted to investigate the method of reducing patients' radiation exposure during X-ray imaging of Both Hip Ap examination by removing the grid. When using the grid with 60 kV and a non-filter, the Entrance Surface Dose was 4.77 mGy, and the result was highest and 34 times higher than the lowest measurement when removing the grid with 90 kV, and 0.3 mmCu filter. Based on the ICRP Pub. 60 at the level of 70 kV, the Effective Dose of testis and ovary was 0.255 mSv when using the grid, and that result was approximately 5.2 times higher than the 0.049 mSv when removing the grid. Based on the ICRP Pub. 103 at the level of 70 kV, the Effective Dose of testis and ovary was 0.090 mSv when using the grid, and that result was approximately 4.5 times higher than the 0.020 mSv when removing the grid. When using the grid, the range of Exposure Index was 671 to 782, and when removing the grid, the range of Exposure Index was 513 to 606, and both results were at optimal exposure conditions and valid diagnostic imaging after evaluations. Therefore, removing the grid during X-ray imaging of Both Hip Ap will help reduce patients radiation exposure.

The Elimination Method of Ripple Voltage for a Single Grid-Connected PV System (단상 계통연계형 태양광 발전시스템의 맥동전압제거 기법)

  • Lee, Jae-Geun;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.406-407
    • /
    • 2011
  • The dc link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current, and according to the problem, power quality is lower. This paper proposes the new method for removing ripple voltage. The performance was verified through computer simulation using MATLAB.

  • PDF

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

Study on Efficient Impulsive Noise Mitigation for Power Line Communication

  • Seo, Sung-Il
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.199-203
    • /
    • 2019
  • In this paper, we propose the efficient impulsive noise mitigation scheme for power line communication (PLC) systems in smart grid applications. The proposed scheme estimates the channel impulsive noise information of receiver by applying machine learning. Then, the estimated impulsive noise is updated in data base. In the modulator, the impulsive noise which reduces the PLC performance is effectively mitigated through proposed technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the conventional model. As a result, the proposed noise mitigation improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC systems for smart grid.

Improvement of High-Availability Seamless Redundancy (HSR) Traffic Performance for Smart Grid Communications

  • Nsaif, Saad Allawi;Rhee, Jong Myung
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.653-661
    • /
    • 2012
  • High-availability seamless redundancy (HSR) is a redundancy protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy will pass through separate physical paths, pursuing zero fault recovery time. This means that even in the case of a node or a link failure, there is no stoppage of network operations whatsoever. HSR is a potential candidate for the communications of a smart grid, but its main drawback is the unnecessary traffic created due to the duplicated copies of each sent frame, which are generated and circulated inside the network. This downside will degrade network performance and might cause network congestion or even stoppage. In this paper, we present two approaches to solve the above-mentioned problem. The first approach is called quick removing (QR), and is suited to ring or connected ring topologies. The idea is to remove the duplicated frame copies from the network when all the nodes have received one copy of the sent frame and begin to receive the second copy. Therefore, the forwarding of those frame copies until they reach the source node, as occurs in standard HSR, is not needed in QR. Our example shows a traffic reduction of 37.5%compared to the standard HSR protocol. The second approach is called the virtual ring (VRing), which divides any closed-loop HSR network into several VRings. Each VRing will circulate the traffic of a corresponding group of nodes within it. Therefore, the traffic in that group will not affect any of the other network links or nodes, which results in an enhancement of traffic performance. For our sample network, the VRing approach shows a network traffic reduction in the range of 67.7 to 48.4%in a healthy network case and 89.7 to 44.8%in a faulty network case, compared to standard HSR.

An Improved Face Recognition Method Using SIFT-Grid (SIFT-Grid를 사용한 향상된 얼굴 인식 방법)

  • Kim, Sung Hoon;Kim, Hyung Ho;Lee, Hyon Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.299-307
    • /
    • 2013
  • The aim of this paper is the improvement of identification performance and the reduction of computational quantities in the face recognition system based on SIFT-Grid. Firstly, we propose a composition method of integrated template by removing similar SIFT keypoints and blending different keypoints in variety training images of one face class. The integrated template is made up of computation of similarity matrix and threshold-based histogram from keypoints in a same sub-region which divided by applying SIFT-Grid of training images. Secondly, we propose a computation method of similarity for identify of test image from composed integrated templates efficiently. The computation of similarity is performed that a test image to compare one-on-one with the integrated template of each face class. Then, a similarity score and a threshold-voting score calculates according to each sub-region. In the experimental results of face recognition tasks, the proposed methods is founded to be more accurate than both two other methods based on SIFT-Grid, also the computational quantities are reduce.

Performance Simulation of 300cc Small Engine Intake System (300cc급 소형엔진 흡기시스템의 성능 해석)

  • Kim, Chang-Su;Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3048-3053
    • /
    • 2009
  • Because of operating environment, the intake system of the small engine needs a serious design consideration. To capture oil particles from the blow-by gas, a grid of the intake system had been applied, but it has very low capturing efficiency and high manufacturing cost. To improve system performance, a new intake system has been developed using computational technique. The grid has been removed and the location of the blow-by hall has been re-designed. Total efficiency capturing oil particles has been improved about 5 times compared with that of previous model with the grid. By removing the grid, approximately 10% of the total manufacturing cast has been reduced.

DC link Ripple Voltage Compensation of a Single-phase Grid-Connected PV System (단상 계통연계형 태양광 발전 시스템의 직류링크 맥동전압 보상)

  • Lee, Jae-Geun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.377-387
    • /
    • 2012
  • A single-phase grid-connected PV system is known as suitable for housing of less than 3 kW. The DC link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current. According to the problem, power quality is lower. Many engineers have studied about this problem. The most simple method is to use low pass filter on DC link voltage control. However it is affected by DC link voltage control bandwidth. If cutoff frequency is reduced to increase the performance of low pass filter, it also lowers DC link voltage control bandwidth. Second method is using band stop filter, it works good on steady state but not good on transient state. This paper proposes the new method for removing ripple voltage to get an exact current reference. It improves the responses on steady state and transient state. The performance was verified through computer simulation using MATLAB and actual experiments.

On the Use of Momentum Interpolation Method for flows Involving A Large Body force (바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

A Study on the Use of Momentum Interpolation Method for Flows with a Large Body Force (바디포오스가 큰 유동에서 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.8-16
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation method for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. The origins of problems of the momentum interpolation methods are the validity of linear assumptions employed for the evaluation of the cell-face velocities, the enforcement of mass conservation for the cell-centered velocities and the specification of pressure and pressure correction at the boundary. Numerical experiments are performed for a typical flow involving a large body force. The numerical results are compared with those by the staggered grid method. The fact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.