• Title/Summary/Keyword: Grid Control

Search Result 1,661, Processing Time 0.029 seconds

Improved Deadbeat Current Controller with a Repetitive-Control-Based Observer for PWM Rectifiers

  • Gao, Jilei;Zheng, Trillion Q.;Lin, Fei
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • The stability of PWM rectifiers with a deadbeat current controller is seriously influenced by computation time delays and low-pass filters inserted into the current-sampling circuit. Predictive current control is often adopted to solve this problem. However, grid current predictive precision is affected by many factors such as grid voltage estimated errors, plant model mismatches, dead time and so on. In addition, the predictive current error aggravates the grid current distortion. To improve the grid current predictive precision, an improved deadbeat current controller with a repetitive-control-based observer to predict the grid current is proposed in this paper. The design principle of the proposed observer is given and its stability is discussed. The predictive performance of the observer is also analyzed in the frequency domain. It is shown that the grid predictive error can be decreased with the proposed method in the related bode diagrams. Experimental results show that the proposed method can minimize the current predictive error, improve the current loop robustness and reduce the grid current THD of PWM rectifiers.

Fuzzy Logic based Admission Control for On-grid Energy Saving in Hybrid Energy Powered Cellular Networks

  • Wang, Heng;Tang, Chaowei;Zhao, Zhenzhen;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4724-4747
    • /
    • 2016
  • To efficiently reduce on-grid energy consumption, the admission control algorithm in the hybrid energy powered cellular network (HybE-Net) with base stations (BSs) powered by on-grid energy and solar energy is studied. In HybE-Net, the fluctuation of solar energy harvesting and energy consumption may result in the imbalance of solar energy utilization among BSs, i.e., some BSs may be surplus in solar energy, while others may maintain operation with on-grid energy supply. Obviously, it makes solar energy not completely useable, and on-grid energy cannot be reduced at capacity. Thus, how to control user admission to improve solar energy utilization and to reduce on-grid energy consumption is a great challenge. Motivated by this, we first model the energy flow behavior by using stochastic queue model, and dynamic energy characteristics are analyzed mathematically. Then, fuzzy logic based admission control algorithm is proposed, which comprehensively considers admission judgment parameters, e.g., transmission rate, bandwidth, energy state of BSs. Moreover, the index of solar energy utilization balancing is proposed to improve the balance of energy utilization among different BSs in the proposed algorithm. Finally, simulation results demonstrate that the proposed algorithm performs excellently in improving solar energy utilization and reducing on-grid energy consumption of the HybE-Net.

Comprehensive Coordinated Control Strategy of Virtual Synchronous Generators under Unbalanced Power Grid

  • Wang, Shuhuan;Han, Li;Chen, Kai
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1554-1565
    • /
    • 2019
  • When grid voltage is unbalanced, the grid-connected output current and power of Virtual Synchronous Generators (VSGs) are distorted and quadratic. In order to improve the power quality of a grid connected to a VSG when the grid voltage is unbalanced, a comprehensive coordinated control strategy is proposed. The strategy uses the positive sequence current reference command obtained by a VSG in the balanced current control mode to establish a unified negative sequence current reference command analytical expression for the three objectives of current balance, active power constant and reactive power constant. In addition, based on the relative value of each target's volatility, a comprehensive wave function expression is established. By deriving the comprehensive wave function, the corresponding negative sequence current reference value is obtained. Therefore, the VSG can achieve the minimum comprehensive fluctuation under the premise that the three targets meet the requirements of grid connection, and the output power quality is improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Comparison of Voltage Oriented Control and Direct Power Control under Command Mode Transition for PMSG Wind Turbines

  • Kwon, Gookmin;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.173-174
    • /
    • 2016
  • This paper proposes a comparison of Voltage Oriented Control (VOC) and Direct Power Control (DPC) under command mode transition for PMSG Wind Turbines (WT). Based on a neutral point clamped three level back to back type Voltage Source Converter (VSC), proposed control scheme automatically control the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. Automatic command mode transition based on the dc-link voltage error provides a command mode changing between grid command and MPPT mode. It is confirmed through PLECS simulations in Matlab. Simulation result shows that proposed control scheme of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control scheme of MPPT with optimal torque control and VOC under a step response. The proposed control scheme makes it possible to provide a good dynamic performance for PMSG wind turbines in order to generate a high quality output power.

  • PDF

Performance comparison study of current control methods for grid connected inverters (계통연계형 인버터의 전류제어기법 성능 비교)

  • Jeong, Horyeong;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.877-882
    • /
    • 2020
  • This paper presents performance comparison study of current control methods for grid connected inverter (GCI) system. Different current control methods have been developed for GCI systems and each controller has its own advantages and limitations. Steady state and transient dynamic performance of the GCI current controllers are compared in this paper. The performance of the proposed command feedforward control (CFFC) and disturbance rejection control (DRC) is analyzed before and after application to all GCI current controllers. The proposed CFFC and DRC control algorithms is analyzed in a frequency domain and the simulation and experiment models of each GCI current control methods are developed for verification of the performance.

A Simple Grid-Voltage-Sensorless Control Scheme for PFC Boost Converters

  • Nguyen, Cong-Long;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.712-721
    • /
    • 2014
  • This paper introduces a simple grid-voltage-sensorless control scheme for single-phase power factor correction (PFC) boost converters. The grid voltage waveform is obtained based on the dc output voltage, the switching duty ratio, and a phase-lead compensator. In addition, the duty ratio feedback is utilized to obtain the unity input power factor and the zero harmonic current. The proposed control scheme is designed and mathematically analyzed based on a small-signal model of PFC boost converters. To verify the effectiveness of the proposed control scheme, several simulations and experiments are carried out in two applications: an industrial power system with a 60 Hz grid frequency and a commercial aircraft application with a 400 Hz grid frequency.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems (분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.