• Title/Summary/Keyword: Greenhouses

Search Result 631, Processing Time 0.029 seconds

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

The change of core habitats of the cranes due to release of the civilian control zone; CCZ and construction disturbance (서식지 교란 및 민간인통제지역 해제에 의한 두루미와 재두루미의 핵심서식지 변화)

  • Yoo, Seunghwa;Jung, Hwayoung;Kim, Kyoungsoon;Yu, Dong Su;Kim, Namshin;Kim, Hwajung;Hur, Weehaeng;Kim, Jinhan;Lee, Kisup
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.301-316
    • /
    • 2015
  • The endangered species, The Red-crowned Crane and the White-naped Crane are vulnerable species to the disturbance for human beings. We examined the importance of CCZ for the cranes by comparing the crane's density in some CCZ-released areas, which are cranes' wintering site in Cheorwon. We also assessed influence of disturbance such as construction and greenhouses on core habitats of cranes. Our study results suggested that the construction and reclamation in the CCZ shrunk core habitat area while increasing core area of far from the construction and reclamation area. The CCZ has been set since March, 2011 and the number of greenhouse has rapidly increased after 2012. As the number and size of greenhouse in the area where designation of CCZ was cancelled increased, foraging area of cranes diminished. Although the area where designation of CCZ was cancelled seemed to have more human disturbance than CCZ, the foraging density of cranes did not decline and even that of white-naped cranes increased. This could be the influence of artificial food supply at their roosting site. In conclusion, if the area of CCZ decline continuously in the future, density of cranes would decrease.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

First Report of Stem Rot in Statice Caused by Rhizoctonia solani in Korea (Rhizoctonia solani에 의한 스타티스 줄기썩음병)

  • Kang, Mi-Hyung;Cheong, Dong-Chun;Choi, Chang-Hak;Lim, Hoi-Chun;Song, Young-Ju;Noh, Tae-Hwan;Lee, Du-Ku;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.54-56
    • /
    • 2009
  • Stem rot of perennial statice (Limonium sinuatum) was observed in Un bong, Jeonbuk from 2006 to 2007. Affected plants were randomly distributed in the greenhouses and infection rate was more than 10%. Stem and leaf of statice at soil line were dried and turned brown, initially. As the disease became severe, other stem parts and crowns were turned dark brown and then sunken. The fungal isolates were showed initially white aerial mycelium and turned brown with age. They produced few sclerotia which small, irregularly shaped with pinpoint sized. Mycelia were branched at $90^{\circ}$ angles and multinucleate in one cell. The pathogenicity of causal organism was proved according to Koch's postulates. The causal fungus of stem rot was identified as Rhizoctonia solani based on the cultural and morphological characteristics. This is the first report on stem rot of statice by R. solani in Korea.

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

A Study on the Image Evaluation for the Improvement of the Landscape of Horticultural Complex in Rural Area (농촌지역 시설원예단지의 경관 개선을 위한 이미지평가)

  • Kong, Minjae;Lee, Siyoung;Kang, Donghyeon;Park, Minjung;Yun, Sungwook;Shin, Jihoon;Son, Jinkwan
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • Humans are provided with a wide range of public benefits from ecosystems and agricultural ecosystems, but the establishment of the horticulture complex could be a space that hampers the public function of the agricultural ecosystem. In this study, we sought to focus the function of landscape creation of agricultural landscape and tried to analyze the landscape of the horticulture complex. Therefore, This study aims to suggest ways to build a greenhouse complex which is being indiscreetly introduced in the agriculture landscape through environmentally-friendly manner and minimize the function of the ecosystem service. We divided the greenhouse complex into two categories of Plastic Greenhouse(v) and Glass Greenhouse(g), and compared them to the Netherland and Japan counterparts. Each image of research areas was selected by 3 pics and polled by a total of 101 people. The results of the Evaluation of Landscape Image are as shown in the figure. Netherland Glass Greenhouse scored 1.80 in terms of 'Neat' which is one of the given 15 adjectives. Study results shows that Korean Plastic Greenhouse landscapes need to endeavor Japanese vinly greenhouses and Dutch glasshouses. Consequently, an analysis on the elements of landscapes including green area, variant elements, separation distance is essential in order to improve our country's greenhouse complex landscapes. In this regard, continuous research is required to improve rural landscapes and harmonize large-scale horticultural facilities into the existing agricultural ecosystem.

Effect of field location and spray device on pesticide residue in chilli peppers (농약 살포조건이 고추열매 중 잔류에 미치는 영향)

  • Son, Kyeong-Ae;Kang, Tae-Kyeong;Park, Byeong-Jun;Kim, Taek-Kyum;Gil, Geun-Hwan;Kim, Chan-Sub;Kim, Jin-Bae;Im, Geon-Jae;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.230-235
    • /
    • 2012
  • This study was carried out to clarify effects of field location and sprayer on the level of pesticide residue in chilli peppers. As confirmed by statistical analysis, the residue levels in green pepper among three greenhouses did not show significant difference at the first day after spraying with the same engine sprayer and nozzle. But the residue levels in green peppers collected from the exposed outside of crop were 2 times higher than those from the hidden inside. The sampling site was one of variation elements of pesticide residue. The residue levels after application by knapsack engine powered sprayer were 1.7 times higher than those by manual compressed sprayer. As the spraying pressure of the engine power sprayer is 2 times higher than the commonly used pressure of the manual compressed sprayer, the pressure of the sprayer and nozzles were considered to affect on the residue levels in peppers.

Occurrence of Target Spot on Rosemary Caused by Corynespora cassiicola in Korea (Corynespora cassiicola에 의한 로즈마리 점무늬병)

  • Lee, Wang-Hyu;Han, Sang-Jun;Choi, In-Young
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • The purpose of this experiment was to investigate the development of new spot disease on the leaf and stem of rosemary (Rosmarinus officinalis) in commercial greenhouses at Jeonju and Namwon in Korea. Incidence of target spot on rosemary was higher at the end of the rainy season with high humidity. Those symptoms were black ring spots (3-5 mm in diameter) and withering on green leaves and stems. Conidiophores and conidia were formed on the infected tissue in moist chamber and conidia were shown as the cylindrical and oval types in chain, ranged from 55 to $275{\mu}m$ in length, and 7 to $14{\mu}m$ in width. Conidia with eight to ten pseudosepta were formed on the conidiapore. The optimum growth temperature of isolates was $30^{\circ}C$ on the PDA medium under the dark condition. In the pathogenesis test, the target spot and withering symptoms were appeared on the leaves and stems 3 days after inoculation showing similar symptoms compared to those of in nature. The same fungus was re-isolated from infected lesion, indicating that Corynespora cassiicola caused leaf target spot and twig blight on rosemary. The rDNA ITS nucleotide sequences of the pure cultured isolate from the diseased area on rosemary showed 100% similarity to the sequences of C. cassiicola available in the GenBank database (JQ595296, JQ595297, FJ852715 and AY238606). Therefore, we report that the target spot of leaves and stems in rosemary was caused by C. cassiicola.