• Title/Summary/Keyword: Greenhouse vegetable

Search Result 150, Processing Time 0.029 seconds

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun;Orawan Chunhachart;Moltira Srithaworn;Rungnapa Tangchitcharoenkhul;Janpen Tangjitjareonkun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1435-1446
    • /
    • 2022
  • Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

Influence of Daytime Temperature on the Time Required for Fruit Harvest and Yield of Hot Pepper (주간온도가 고추의 수확 소요일수 및 수량에 미치는 영향)

  • Lee, Sang-Gyu;Choi, Chang-Sun;Lee, Jun-Gu;Jang, Yoon-Ah;Nam, Chun-Woo;Lee, Hee-Ju;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1181-1186
    • /
    • 2013
  • Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, Chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This study examined the influence of air temperature during seedling growth on the time required to reach the first fruit maturity and yield of hot pepper. Seedling plants of 'Super Manita' hot pepper was grown in temperatures $2.5^{\circ}C$ and $5.0^{\circ}C$ lower than the optimum temperature (determined by the average of temperatures for the past 5 years). Seedlings were transplanted into round plastic containers (30-cm diam., 45-cm height) and were placed in growth chambers in which the ambient temperature was controlled under natural sunlight. The growth of seedlings under lowered temperatures was reduced compared to the control. The mineral (K, Mg, P, N) concentrations in the leaf tissues were higher when plants were grown with the ambient temperature $2.5^{\circ}C$ lower than the optimum, regardless of changes in other growth parameters. Tissue calcium (Ca) concentration was the highest in the plants grown with optimum temperature. The carbohydrate to nitrogen (C/N) ratio, which was the highest (18.3) in the plants grown with optimum temperature, decreased concomitantly as the ambient temperature was lowered $2.5^{\circ}C$ and $5.0^{\circ}C$. The yield of the early harvested fruits was also reduced as the ambient temperature became lower. The first fruit harvest date for the plants grown with optimum temperature (June 27) was 13 days and 40 days, respectively, earlier than that in plants grown with $2.5^{\circ}C$ (July 10) and $5.0^{\circ}C$ (Aug 6) lower ambient temperatures. The fruit yield per plant for the optimum temperature (724 g) was the greatest compared to those grown with $2.5^{\circ}C$ (446 g) and $5.0^{\circ}C$ (236 g) lower temperatures. The result of this study suggests that the growers should be cautioned not to transplant their hot pepper seedlings too early into the field, since it may delay the time of first harvest eventually reducing total fruit yield.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Analysis on the Effect of the Crown Heating System and Warm Nutrient Supply on Energy Usage in Greenhouse, Strawberry Growth and Production (관부 난방시스템과 온수 양액 공급이 온실 에너지 사용량, 딸기 생육 및 생산성에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.271-277
    • /
    • 2021
  • In this study, experiments of local heating on crown and supplying warm nutrient for energy saving and improving growth of 'Seolhyang' strawberry were conducted. The temperature of inside and crown in greenhouses which were control (space heating 8℃) and test (space heating 5℃+crown heating) was measured. In the control greenhouse, the average of temperature and humidity in December was 7.1℃, 87.2%, respectively. In the test greenhouse, the average of temperature and humidity in December was 5.7℃, 88.7%. The temperature of crown and inside the bed were 7.9℃, 10.8℃ in control, 9.3℃, 12.7℃ in test. During the test period, the total 16,847×103 kcal of energy was consumed in control greenhouse including space heating. In test greenhouse including space heating, crown heating and warm water supplying, total 9,475.7×103 kcal of energy was consumed. So, energy consumption in test was 43.8% less than in the control. The total yields of strawberry during test period were 412.7g/plant for test greenhouse and 393.3g/plant for control greenhouse respectively.

Biological activities of novel quinolinyloxadiazoles (신규 quinolinyloxadiazole 유도체의 생물활성)

  • Hwang, In-Taek;Choi, Jung-Sub;Hong, Kyung-Sik;Lee, Byung-Hoe;Kim, Jin-Seog;Ryu, Eung-Kul;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.52-63
    • /
    • 1998
  • A novel quinolineoxadiazoles, substituted the carboxylic acid group with 1,2,4-oxadiazole radicle, of KSC-16960 and related compounds were evaluated to examine the herbicidal activity, crop injury and residual effect of after-vegetable crops compared with those of quinclorac (3,7-dichloro-8-quinolinecarboxylic acid), of which use is now banned because of its residual activity to some succeeding vegetable crops. KSC-16960 showed 2- and 3-leaf stages of barnyardgrasses effectively controlled by more than 95 and 90%, respectively, at a rate of 6.25 g/ha. The dose of KSC-16960 controlled 4- and 5-leaf stages of barnyardgrasses by more than 90% were found to be 50 g and 100 g/ha, respectively. The selectivity of KSC-16960 between direct-seeded rice and barnyardgrass was approximately 2-fold higher than that of quinclorac when they were treated to the soil. The selectivity indices of KSC-16960 and of quinclorac between 1-leaf stage of direct seeded rice and 5-leaf stage of barnyardgrass were 44 and 23, respectively, and those between 1-leaf stage of direct seeded rice and 4-leaf stage of barnyardgrass were almost 2-fold higher. Application of KSC-16960 with bentazone exhibited an additive controlling effect on several weed species, but that of quinclorac exhibited an antagonistic effect. With pyrazosulfuron-ethyl, on the other hand, both application of KSC-16960 and quinclorac showed additive interactions. Under a greenhouse condition, the residual activity of KSC-16960 to succeeding tomato plants was approximately 4-fold lower compared to that of quinclorac. KSC-16960 could be substituted for quinclorac, if it will be made some more improvement for reducing residual activity.

  • PDF

Development of Growth Models as Affected by Cultivation Season and Transplanting Date and Estimation of Prediction Yield in Kimchi Cabbage (재배시기, 정식일에 따른 배추의 생육 모델 개발 및 생산량 예측 평가)

  • Lee, Jin Hyoung;Lee, Hee Ju;Kim, Sung Kyeom;Lee, Sang Gyu;Lee, Hee Su;Choi, Chang Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.235-241
    • /
    • 2017
  • This study was carried out to estimate growth characteristics of Kimchi cabbage cultivated in two different growing seasons and three transplanting dates in the greenhouses, and to create a predicting model for the production of Kimchi cabbage based on the growth parameters and climatic elements. Kimchi cabbages were transplanted three times at intervals of two weeks in spring and autumn growing seasons. Sigmoidal models for the estimation of fresh weight (Fw) was designed with days after transplanting, which were Fw=4451.5/[1+exp{-(DAT-34.1)/3.6}]($R^2=0.992$) and Fw=7182.0/[1+exp{-(DAT-53.8)/11.6}] ($R^2=0.979$), respectively. The relationship between fresh weight of Kimchi cabbage and growing degree days (GDD) was highly correlated, and the regression model represented by Fw=4451.5/[1+exp{-(GDD-34.1)/3.6}] ($R^2=0.992$) in spring growing season. The yield of Kimchi cabbage under spring and autumn growing season were estimated 11348.3kg/10a and 15128.2kg/10a, respectively, which were much different than outdoor culture each growing season, while greenhouse cultivation have shown similar results. To estimate the efficacy of prediction yield in Kimchi cabbage, we will need to supplement a predicting model, which was based on the parameters and climatic elements by the field cultivation.

Influence of Shading and Irrigation on the Growth and Development of Leaves Tissue in Hot Pepper (고추 고온기 재배 시 차광과 관수가 생육 및 엽육조직 발달에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Lee, Hee Ju;Chae, Won Byoung;Do, Kyung Ran
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.448-453
    • /
    • 2014
  • Influences of shading and irrigation in summer hot pepper cultivation on the plant growth and mesophyll tissue were investigated. Hot pepper plants were exposed to three shade levels (0, $30{\pm}5$ and $80{\pm}5%$) and irrigated or non-irrigated in greenhouse condition. Plant height and leaf area were highest in 30% shading and stem diameter and fresh and dry weights were highest in no shading. Plant growth was better in rain shelters with irrigation than in those without irrigation. The numbers of hot pepper fruits in the beginning of harvest were 49 in rain shelters without irrigation and shading, 22 in those with irrigation and without shading, 5 in those without irrigation with 30% shading, and 1 in those with irrigation and 30% shading. However, 80% shading showed lowest flower number and flower abscission, resulting in no fruit set, regardless of irritation. This is because carbohydrate translocation from leaves to reproductive organs may be not enough for developing fruits due to the lack of sunlight. The yield of hot pepper tended to be higher in rain shelter with irrigation than in those without irrigation. In optical microscopy observation, the thickness and development of mesophyll tissues decreased as increasing the degree of shading but no effect of irrigation on mesophyll tissues was observed. When stomata were observed with scanning electron microscope (SEM), the shape of stomata was normal but tissues surrounding stomata were slightly wrinkled in plants grown under 30% shading. The large number of abnormal stomata and wrinkled leaves was observed among plants grown in rain shelters with 80% shading. In plants grown in rain shelters without irrigation, tissues surrounding stomata were wrinkled and 10-20% decrease in the number of stomata was observed. Therefore, in hot pepper cultivation in summer with high temperature, shading was not effective for fruit yield and mesophyll tissue development; if shading is unavoidable, high degree of shading is not advisable. Further studies are needed for appropriate cultivar selection and environment-control techniques in hot pepper cultivation in summer with high temperature.

Effects of Growth and Cellular Tissue under Abnormal Climate Condition in Chinese Cabbage (이상기상 조건이 배추의 생육 및 세포조직에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Choi, Jun Myung;Lee, Hee Ju;Park, Suhyoung;Do, Kyung Ran
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.87-90
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This experiment was carried out to figure out the change of cellular tissue of chinese cabbage under the condition of low temperature to provide the information regarding the coming climatic change, on the performance of 'Chunkwang' chinese cabbage during the spring growing season. In our study, plant height, number of leaf, chlorophyll and leaf area was lower at the open field cultivation than heating house treatment after transplanting 50 days. Especially in fresh weight, compared with heating treatment, open field and not heated treatment were notably low with the 1/3 level. Of damage symptoms due to low temperature cabbage leaves about 10 sheets when $-3.0^{\circ}C$ conditions in chinese cabbage was a little bit of water soaking symptoms on the leaves. $-7.4^{\circ}C$ under increasingly severe water soaking symptoms of leaf turns yellow was dry. Microscopy results showed symptoms of $-3.0^{\circ}C$ when the mesophyll cell of palisade tissue and spongy tissue collapse, $-7.4^{\circ}C$ palisade tissue and spongy tissue was completely collapsed. The result of this study suggests that the growers should be cautioned not to transplant their chinese cabbage seedlings too early into the field, and should be re-transplanting or transplanting other plants if chinese cabbage are exposed to suboptimal temperature conditions ($-3.0^{\circ}C$ or $-7.4^{\circ}C$).

Beneficial Effect of Heat Fans on Quality and Yield of Korean Melon Cultivated in Greenhouses at Winter Season (히터팬 처리가 저온기 하우스 참외의 품질 및 수량에 미치는 긍정적 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Oh, Su Whan;Cheung, Joung Do;Sohn, Hyoung Rac;Do, Han Woo;Kim, Mi Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • The purpose of this study was to investigate the changes of environmental conditions and the quality and yield of melon fruit by heat fan operation in greenhouses at winter season. The average daily temperature inside the tunnels during January 1 to 31, 2017 was $0.9^{\circ}C$ higher than that of the control $17.8^{\circ}C$. The air flow rate of heater fan treatment was 4.8 times higher than the control (untreated $0.05m{\cdot}s^{-1}$) at 20cm above the ground where the korean melon grew. The temperature of the heater pan was $5.6^{\circ}C$ higher than that of the untreated at $35.3^{\circ}C$ and the relative humidity was 8.1% lower than that of the untreated at 39.1%. The flowering rate of the heater fan treatment was 96%, 5% higher than the control. The number of first harvest days of heater fan treatment was shortened by 4 days than that of untreated treatment. Fruit quality and marketable fruit yield increased by 3.4% and 38% compared to untreated respectively, the heater fan treatment increased the temperature inside the greenhouse and air flow rete, which were beneficial for growing the korean melon in greenhouses at winter season.