• Title/Summary/Keyword: Greenhouse cucumber

Search Result 213, Processing Time 0.028 seconds

Survey of Physiological Disorders in Greenhouse Fruit Vegetables in Kyungbuk Province (경북지방 시설과채류의 생리장해 발생조사)

  • Hwang, Jae Moon;Um, Jeong;Yi, Young Keun
    • Horticultural Science & Technology
    • /
    • v.17 no.6
    • /
    • pp.737-741
    • /
    • 1999
  • We surveyed the physiological disorders of fruit vegetables grown in the greenhouse in Kyungbuk province in 1998. Greenhouses used for cultivation were mostly single or multi-span iron pipe houses covered with polyethylene film. Single span greenhouses were used for strawberry, oriental melon and watermelon. Fifty six percent of the surveyed farms was a mono-cropping system for oriental melon and tomato. There were greenhouses used for successive cultivation for 10 years or more for strawberry and oriental melon in Koryeong and Seongju. Varieties of fruit vegetables cultivated were diverse, especially in cucumber and watermelon. In strawberry, malformed fruits were observed most frequently in March and the small fruits at late harvest period. Leaf chlorosis, stunt plants and runner outbreak were also found during the growing season. In tomato, occurrence of malformed fruits was severe from March to May, and occurrence of cracked fruits and blossom- end rot was also severe in October and November. The self topping and abnormal stem in tomato were problem in hydroponic cultures in August and November, respectively. Malformed cucumber fruits, such as curved, club shaped, irregular shaped and narrow necked, occurred at late season. Umbrella-shaped leaf in cucumber in summer were caused by calcium deficiency. Most serious disorders were fermented and malformed fruits occurring from March to May in oriental melon, and cracked fruits occurring from April to May in watermelon. At late growing stage of melons the leaf chlorosis occurred with complex symptoms of leaf disease. Growers had little knowledge on physiological disorders, and also on diagnose and measures to cure the disorders. Most growers pointed out that poor soil environment and temperature management in the greenhouse as the main causes of physiological disorders.

  • PDF

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali;Sun, Xiang;Li, Xingchun;Jatoi, Ghulam Hussain;Guo, Liang-Dong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.598-608
    • /
    • 2019
  • Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.

Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Nam, Myeong-Hyeon;Lee, Seon-Woo;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Biological control activity of Acremonium strictum BCP, a mycoparasite on Botrytis cinerea, was examined against six plant diseases such as rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew in growth chambers. The spore suspension of strain BCP showed strong control activities against five plant diseases except against wheat leaf rust. On the other hand, the culture filtrate of A. strictum BCP was effective in controlling only cucumber gray mold and barley powdery mildew. Further in vivo biocontrol activities of A. strictum BCP against tomato gray mold were investigated under greenhouse conditions. Control efficacy of the fungus on tomato gray mold increased in a concentration-dependent manner. Treatment of more than $1{\times}10^6$ spores/ml significantly controlled the disease both in tomato seedlings and in adult plants. The high disease control activity was obtained from protective application of the strain BCP, whereas the curative application did not control the disease. Foliar infections of B. cinerea were controlled with $1{\times}10^8$ spores/ml of A. strictum BCP applied up to 7 days before inoculation. In a commercial greenhouse, application of A. strictum BCP exhibited the similar control efficacy with fungicide procymidone (recommended rate, $500{\mu}g/ml$) against strawberry gray mold. These results indicate that A. strictum BCP could be developed as a biofungicide for Botrytis diseases under greenhouse conditions.

Comparison of the Antioxidative Abilities of Greenhouse-Grown Cucumber According to Cultivars and Growth Stages (시설재배 오이의 품종별, 생육단계별 항산화능 비교)

  • Yang, Seung Yul;Kim, Hong Gi;Lee, Suk Jae;Cha, Won Mi;Ahn, Chul Hyun;Boo, Hee Ock
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.548-556
    • /
    • 2013
  • The objective of this study was to determine the effect of antioxidant enzyme activity and radical scavenging activities of cucumber grown greenhouse. The analytic method of antioxidant activities were measured by estimating DPPH free radical scavenging, nitrite scavenging ability activity and ABTS radical scavenging ability. The DPPH free radical scavenging activity of Jangjukcheongjang was the highest in most of the growth stage. The Nitrite scavenging ability at pH 1.2 was more than 40% in all cultivars and growth stages. The ABTS radical scavenging ability of Jangjukcheongjang and Nulpureuncheongjang showed relatively little higher than Janghyeongnakhap and Sinjoeunbaekdadagi. The SOD activity showed higher activity than 95% in all cultivars and growth stages. The activity of CAT was highest in the Nulpureuncheongjang of 2 (12~16cm) growth stage, and the APX activity of Nulpureuncheongjang and Janghyeongnakhap showed a relatively high activity. The POX activity showed distinctly different trends depending on the growth stage, and that is, the activity at harvest stage was significantly reduced. These results suggest that the cucumber had the potent biological activities, and that in the future, the availability of cucumber will be increase in the field of high-value cosmetic and food products.

Criteria of Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber under Greenhouse Cultivation in Gyeonggi region

  • Park, Jung-Soo;Roh, Ahn-Sung;Jang, Jae-Eun;Kang, Chang-Sung;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.295-304
    • /
    • 2015
  • To develop a technique for efficient management of fertility for cucumber in greenhouse, a quick test method to quantify nitrate ($NO_3{^-}$) content in soil solution and leaf petiole juice using a simple instrument that are easy to use for farmers was investigated. N fertilizer (urea) was applied at 0, 50, 100 and 200% levels of the recommended application rate from 30 days after transplanting to harvest by soil fertigation treatments. Stable results were obtained from analysis of nitrate ($NO_3{^-}$) using top $10^{th}$ or $11^{th}$ leaf petioles collected between 10 to 11 am in the morning. Under the semiforcing culture, $NO_3{^-}$ content of leaf petiole juice was highest at 60 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$content of leaf petiole juice was $2,418{\pm}78{\sim}2,668{\pm}118$ at 45 DAT, $3,032{\pm}90{\sim}3,332{\pm}63$ at 60 DAT, $2,709{\pm}50{\sim}3,158{\pm}155$ at 75 DAT, $2,535{\pm}49{\sim}2,907{\pm}83$ at 90 DAT, and $2,242{\pm}48mg\;L^{-1}$ at 105 DAT. In addition, appropriate $NO_3{^-}$ content of soil solution was $167{\pm}9{\sim}212{\pm}15$ at 45 DAT, $83{\pm}10{\sim}112{\pm}12$ at 60 DAT, $49{\pm}3{\sim}92{\pm}6$ at 75 DAT, $71{\pm}9{\sim}103{\pm}9$ at 90 DAT, and $73{\pm}9mg\;L^{-1}$ at 105 DAT. The cucumber yield at 100% N level of fertigation was $7,770kg\;10a^{-1}$ and no difference in yield was found at 200% N level of fertigation. However, there was 12% decrease in yield at 50% N fertigation and, 17% decrease at 0% N fertigation. Under retarding culture, $NO_3{^-}$ concentration of leaf petiole juice was highest at 55 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$ content of leaf petiole juice was $2,464{\pm}102{\sim}2,651{\pm}33$ at 45 DAT, $3,025{\pm}71{\sim}3,314{\pm}84$ at 55 DAT and $2,488{\pm}92mg\;L^{-1}$ at 65 DAT, respectively. Appropriate $NO_3{^-}$ content of soil solution was $111{\pm}10{\sim}155{\pm}14$ at 45 DAT, $93{\pm}7{\sim}147{\pm}14$ at 55 DAT, $67{\pm}4mg\;L^{-1}$at 65 DAT, respectively. The cucumber yield at 50% N fertigation was not different from $1,697kg\;10a^{-1}$ of 100% N fertigation level and even with that of the 200% N fertigation. However, there was 21% decrease in yield at 0% N fertigation.

Calculation of Crop Loads for Structural Design of Greenhouse (온실의 구조설계용 작물하중 산정)

  • Na, Wook-Ho;Lee, Jong-Won;Rasheed, Adnan;Kwak, Cheul-Soon;Lee, Si-Young;Yoon, Yong-Cheol;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2017
  • This study was conducted to provide basic data needed to calculate the crop loads for the greenhouse design. Four countries' crop loads for greenhouse structures were compared and the crop loads were measured directly and analyzed for various greenhouse crops, including tomato, strawberry, cucumber, and eggplant. According to the analysis results of four country's standards for the design crop loads, it was judged that the new design crop loads suit for greenhouse crops in our country should be suggested because our standards just used the design crop loads of other countries. The maximum crop loads per plant of tomato, cucumber, eggplant, and strawberry were 3.9, 0.75, 1.9 and $2.1kgf{\cdot}plant^{-1}$, respectively. The crop load per unit area of tomato was $8.5kgf{\cdot}m^{-2}$, which was much greater than the cucumber and eggplant's crop load of 2.1 and $2.4kgf{\cdot}m^{-2}$ respectively. The crop loads of tomato and cucumber, suggested by the greenhouse structure design standard of Korea, is $15kgf{\cdot}m^{-2}$, which is far greater than the values suggested by this research. It was judged that this was because our standard just used the Dutch standard, our crop load standard should be reviewed considering this difference. The crop load of strawberry, including the growing bed, was $21.0kgf{\cdot}m^{-2}$, which was much greater than the crop load in the Dutch standard.

Macro and Micro Nutrient Contents in Leaves of Greenhouse-grown Cucumber by Growth Stages (시설재배 오이의 생육시기별 엽 중 다량요소와 미량요소 함량)

  • Lee, Ju-Young;Sung, Jwa-Kyung;Lee, Su-Yeon;Jang, Byoung-Choon;Kim, Rog-Young;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.215-220
    • /
    • 2011
  • In order to estimate the inorganic nutrient content in cucumber leaves at respective growth stages under greenhouse conditions, we investigated five cucumber farms practicing a forcing cultivation system with nine-month growth period and another five cucumber farms practicing a semiforcing cultivation system with six-month growth period. The cucumber yield in forcing and semiforcing cultivation systems amounted to 14.8 ton $10a^{-1}$ and 10.7 ton $10a^{-1}$, respectively. Soils between two different cultivation systems showed no significant differences in pH, organic matter contents and exchangeable cation contents during early growth stage, whereas EC, $NO_3$-N and available $P_2O_5$ contents were higher in soils of semiforcing cultivation systems. Suitable soil temperature was well provided by forcing cultivation. The highest NPK contents in leaves were observed in 60~80 days after planting for forcing systems and in 100 days after planting for semiforcing systems. Thereby forcing cultivation systems showed somewhat higher NPK contents. Ca and Mg contents in cucumber leaves did not significantly change during the growth period in forcing systems, while semiforcing systems showed the highest contents of Ca and Mg in 80~100 days after planting. Fe, Mn and Zn contents in leaves also did not significantly change during the growth period, whereas Mn contents were slightly higher in forcing systems due to lower soil pH. B contents in leaves were higher in semiforcing systems because of higher available B contents in soil.

Biological Control of Cucumber Powdery Mildew Using A Hyperparasite, Ampelomyces quisqualis 94013 (Ampelomyces quisqualis 94013을 이용한 오이 흰가루병 생물적 방제)

  • Lee, Sang-Yeob;Kim, Yong-Ki;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2007
  • An isolate of Ampelomyces quisqualis 94013(AQ94013) was selected as an effective parasite for biological control of cucumber powdery mildew. In the greenhouse, occurrence of cucumber powdery mildew was significantly suppressed for nine days by pre-treatment with $5.0{\times}10^6/ml$ and $5.0{\times}10^7/ml$ of conidial suspension of AQ94013. The disease was effectively controlled within three to seven days by post-treatment with the $5.0{\times}10^6/ml-conidial$ suspension of AQ94013. When AQ94013 was treated at concentration of $5{\times}10^6/ml$ three times at seven-day interval in the vinylhouse, the control effect was higher than that treated twice at ten-day interval and that treated with fenarimol twice. As the results, Ampelomyces quisqualis 94013 could be a prospective biofungicide for biological control of powdery mildew of cucumber.

Disease Resistance Test Method of Cucumber Powdery Mildew(Sphaerotheca fusca) Using A Leaf Disk Assay (잎절편 (Leaf disk)을 이용한 오이 횐가루병 (Sphaerotheca fusca)에 대한 내병성 검정법)

  • Lee, Yong-Hwan;Seo, Jong-Bun;Choi, Kyong-Ju;Park, In-Jin;Yang, Won-Mo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.78-81
    • /
    • 2004
  • The resistance of 10 varieties of cucumber (Cucumis sativus L.) to powdery mildew, caused by Sphaerotheca fusca, was evaluated by a leaf disk assay. Leaf disks (10 mm in diameter) were removed from fully expanded leaves and then placed in petri dishes containing 0.16% water agar amended with benzimidazole. Leaf disks were inoculated by dropping a 10 $\mu$l of conidia suspension. Conidiophore formation of powdery mildew was the greatest at $25^{\circ}C$. The response of the host to powdery mildew, based on the inoculation onto disks of the first leaf, highly correlated with results obtained from harvesting stage of cucumber plants in greenhouse test (r = 0.99$^{**}$). It is indicating that a leaf disk assay may precisely predict the response of cucumber plant to S. fusca.a.

Net Energy Analysis for Protected Vegetable Production System (시설채소 생산시스템의 순 에너지 분석)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-64
    • /
    • 1995
  • This paper presents analytic results of energy sequestered for the forcing cultural Cu- cumber and the others production system with the input-output tables method in the suthern parts of Korea. In this study an attempt is made to evaluate input of direct and indirect energy, output of yield energy and net energy in order to achieve increased energy productivity under P E greenhouse. Cultural practices were grouped soil and soilless with perlite for vegetable production. The results from this study are summarized as follows : 1. Total energy inputs in cucumber production were calculated to be 510 GJ/l0a(di- rect energy : 480 GJ/lOa, indirect energy : 30 GJ/lOa) from soil culture and 440 GJ/ 10a(direct energy : 420 GJ/lOa, indirect energy : 20 GJ/lOa) from soilless culture in perlite hydroponics. 2. Energy outputs from cucumber and biomass were 7 GJ/lOa and 120 GJ/lOa at a uniform rate respectively. 3. Heating fuel as diesel is a major energy inputs approaching 90% of the total energy requirements for cucumber production. 4. Net energy in cucumber production was calculated to be 503 GJ/lOa from soil cul- ture and 431 GJ/lOa from soilless culture. Net energy productivity was maintained costantly as 0.98. 5. Energy productivity in cucumber was calculated to be 0.029 kg/MJ from soil culture and 0.043kg/MJ from soilless culture, while energy efficiency was 0.012 and 0.015 respectively. It is expected that a soilless cultural production system seems to be reduc- tive in seguestered energy input by 13%.

  • PDF