DOI QR코드

DOI QR Code

Macro and Micro Nutrient Contents in Leaves of Greenhouse-grown Cucumber by Growth Stages

시설재배 오이의 생육시기별 엽 중 다량요소와 미량요소 함량

  • 이주영 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과) ;
  • 성좌경 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과) ;
  • 이수연 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과) ;
  • 장병춘 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과) ;
  • 김록영 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과) ;
  • 강성수 (농촌진흥청 국립농업과학원 농업환경부 토양비료관리과)
  • Received : 2011.04.08
  • Accepted : 2011.04.12
  • Published : 2011.04.30

Abstract

In order to estimate the inorganic nutrient content in cucumber leaves at respective growth stages under greenhouse conditions, we investigated five cucumber farms practicing a forcing cultivation system with nine-month growth period and another five cucumber farms practicing a semiforcing cultivation system with six-month growth period. The cucumber yield in forcing and semiforcing cultivation systems amounted to 14.8 ton $10a^{-1}$ and 10.7 ton $10a^{-1}$, respectively. Soils between two different cultivation systems showed no significant differences in pH, organic matter contents and exchangeable cation contents during early growth stage, whereas EC, $NO_3$-N and available $P_2O_5$ contents were higher in soils of semiforcing cultivation systems. Suitable soil temperature was well provided by forcing cultivation. The highest NPK contents in leaves were observed in 60~80 days after planting for forcing systems and in 100 days after planting for semiforcing systems. Thereby forcing cultivation systems showed somewhat higher NPK contents. Ca and Mg contents in cucumber leaves did not significantly change during the growth period in forcing systems, while semiforcing systems showed the highest contents of Ca and Mg in 80~100 days after planting. Fe, Mn and Zn contents in leaves also did not significantly change during the growth period, whereas Mn contents were slightly higher in forcing systems due to lower soil pH. B contents in leaves were higher in semiforcing systems because of higher available B contents in soil.

시설오이 재배작형에 따른 시기별 잎의 무기성분의 지표를 설정하기 위하여 촉성재배 지역 5농가, 반촉성재배 지역 5농가, 전체 10 농가포장을 대상으로 재배현황 및 수량성을 조사하였으며, 잎을 채취 분석하여 생육단계별 엽 중 무기성분 함량을 제시하였다. 작형별 수량은 생육기간이 9개월인 촉성재배가 14.8 톤 $10a^{-1}$, 생육기간이 6개월인 반촉성재배가 10.7 톤 $10a^{-1}$으로 촉성재배에서 현저히 높았다. 오이의 생육초기에 있어서 토양의 pH, 유기물, 치환성 칼륨 등 염기함량은 작형 간에 큰 차이가 없었으나 EC와 질산태질소, 유효인산 함량 등은 대체로 높은 함량을 보이면서 촉성재배지가 반촉성재배지에 비하여 적정수준이거나 적정수준에 근접하였다. 토양온도 역시 대체로 수량이 많았던 촉성재배지에서 적정수준으로 유지되었다. 엽 중 무기성분함량 중 다량요소인 NPK의 최고함량은 촉성재배에서 정식후 60~80일, 반촉성재배는 100일에서 높았으며, 최고함량으로 볼 때 촉성재배에서 다소 높았다. 촉성재배에서 Ca과 Mg함량은 생육시기별 큰 차이가 없으나 반촉성재배에서 정식 후 80~100일에서 최고값을 보였다. 엽 중 Fe, Mn, Zn 등의 미량요소 함량은 생육기간 간에 일정한 경향이 없었으나 Mn함량은 토양 pH가 다소 낮은 촉성재배에서, B함량은 토양의 유효 B함량이 높았던 반촉성재배에서 높은 결과를 보였다.

Keywords

References

  1. Hayashi, I. 1990. New technique for cut-flower cultivation, Part 2. Rose. Sungmundang, Tokyo. 23-48.
  2. Hong, Y.P., I.B. Hur, and K.S. Lee. 1996. Standard of nutrition diagnosis for horticultural crop. Report of agricultural experiment. Agricultural environment NIAST, Suwon, Korea. 368-377.
  3. IKAI. 2005. Illustrated guide for cucumber cultivation. Management of cultivation environment. Institute for Korean Agriculture Information. 83-104.
  4. Jang, B.C., J.Y. Lee, C.S. Lee, S.C. Kim, Y.S. Song, H.B. Yoon, J.K. Sung, Y.J. Lee, W.K. Park, Y.B. Lee, R.Y. Kim, S.Y. Lee, and S.Y. Park. 2009. Results of major nutritional physiology study. Nutrient Diagnosis. NAAS, RDA, Suwon, Korea. 240-255.
  5. Jang, B.C., J.Y. Lee, and S.S. Choe. 2004. Defect and measure of plant physiological disorder. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea.
  6. Joiner, J.R. and C. Convert. 1983. Nutrition and fertilization of horticultural crops. 7:20-68.
  7. Jones, J.B. 1985. Soil testing and plant analysis. Guides for fertilization of horticultural crops. 7:1-68.
  8. Lee, J.Y., J.H. Park, B.C. Jang, K.S. Lee, B.K. Hyun, S.W. Hwang, Y.S. Yoon, and B.H. Song. 2007. The establishment of critical ranges of inorganic nutrition contents in leaves of net melon in protected cultivation. Kor. J. Soil Sci. and Fert. 40:471-475.
  9. Lee, J.Y., J.H. Park, B.C. Jang, K.S. Lee, B.K. Hyun, S.W. Hwang, Y.S. Yoon, and B.H. Song. 2008. Establishment of critical ranges of inorganic nutrition contents in leaves of watermelon in protected cultivation. Kor. J. Soil Sci. and Fert. 41:158-163.
  10. NAAS. 2010. Fertilizer application recommendations for crop plants, National Academy of Agricultural Science, RDA, Suwon, Korea.
  11. NAES. 2002. Rates of fertilizers application for fruit vegetables in Japan. National Agricultural Experiment Station.
  12. NIAST. 1990-2004. Report of agricultural experiment. Agricultural environment. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea.
  13. NIAST. 1999. Detailed Soil Survey and Soil Testing Project. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea.
  14. NIAST. 2000. Analysis methods of soil and plant. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea.
  15. Okhi, K. 1987. Critical nutrient levels related to plant growth and some physiological processes. J. Plant Nutrition. 10:1,583-1,590. https://doi.org/10.1080/01904168709363694
  16. RDA. 1973. Handbook for Soil Survey. Vol. 1. Rural Development Administration, Suwon, Korea.
  17. Roppongi, K. 1998. Study on nutrient management in vegetable greenhouse soil by real time diagnosis. Jpn. J. Soil Sci. Plant Nutr. 69 : 235-238.
  18. Ryu, I.S. 1982. Study on physiological disorder of main vegetable crop-producing area. Outline of agricultural experiment result. RDA, Suwon, Korea.
  19. Wallinga, I.,W. van Vark, V.J.G. Houba, and J.J. van der Lee. 1989. Soil and Plant analysis : Part 7. Plant analysis procedures. Wageningen agricultural university, Netherland. 264.

Cited by

  1. Physicochemical Analyses and Korean Consumers' Acceptability of Environment-Friendly and Conventionally Grown Cucumber vol.28, pp.6, 2015, https://doi.org/10.9799/ksfan.2015.28.6.1071
  2. Evaluation of Soil and Fertilizer Management Techniques Applied by Farmers in Forcing and Semi-forcing Cucumber Cultivation Facilities vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.983