• Title/Summary/Keyword: Greenhouse Structure

Search Result 218, Processing Time 0.025 seconds

The Cause Analysis of Greenhouse Damage for Heavy Snow using Large Displacement Analysis (폭설시 대변위해석을 이용한 온실의 피해원인 분석)

  • Park, Soon-Eung;Lee, Jong-Won;Lee, Suk-Gun;Lee, Hyun-Woo;Choi, Jae-Hyouk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • The collapsing accidents of pipe greenhouses in the farmhouse have been increased duo to heavy snow load. However, the study on exact structure analysis to prevent the collapse of pipe greenhouses is rare and the damage of the farmhouse is annually repeated. The method of existing structure analysis is basically made of linear elastic analysis based on the micro displacement. But the actual stiffness of the pipe greenhouse is significantly weaker than the stiffness of buildings and the load acting on the greenhouses gets to become relatively bigger. It means that the geometry shape of greenhouses changes so that the relation of strain-displacement gets to indicate a nonlinear behavior. Therefore, this study is performed to evaluate the structural safety so as to prevent the collapse of pipe greenhouses, which are the single-span greenhouse(farmhouse guidance shape, G) and multi-span greenhouse(farmhouse supply shape, 1-2W), by performing the large-displacement analysis considering nonlinear effects.

  • PDF

Characteristics of Field Uplift Tests of Continuous Greenhouse using the Load Control Method (하중 제어법을 이용한 파이프 줄기초의 현장 인발저항 특성)

  • Lim, Seong-Yoon;Kim, Myeong-Hwan;Kim, Yu-Yong;Yu, Seok-Chul;Kim, Seok-Jin;Lim, Jae-Sam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.105-111
    • /
    • 2018
  • Institutional inertia anti-disaster standard was presented mainly on the upper surface, it is necessary to improve to the soil type standard and uplift the resistance standard greenhouse that are vulnerable to strong winds. In this study, we carried out a field test using the load control method in order to evaluate the uplift resistance of continuous foundation of greenhouse with different depths of the rafters. Institutional inertia anti-disaster standard of greenhouse foundation did not protect the greenhouse structure from the damages caused by strong winds and heavy snow. Therefore, field tests for behavior characteristics of continuous greenhouse foundation were carried out to ensure stable facility cultivation. The field test condition was evaluated using different embedded depth as follows: 30cm, 40cm, 50cm and spacing 50cm, 60cm, 70 cm. As a result of the uplift resistance field tests using the load control method, the minimum uplift resistance was found to be over 90kg and uplift resistance displacement was 9.4mm. Uplift resistance of the continuous greenhouse foundation was in the range of 90-180 kg according to embedded depth and spacing. Using the test condition, there was no constant trend in the uplift resistance.

Comparative Analysis of TTAK.KO-06.0288-Part3 and Development of an Open-source Communication Library for Greenhouse Control System

  • Kim, Joon Yong;Kim, Sangcheol;Lee, Jaesu
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Purpose: A modern greenhouse consists of various Information and Communications Technology (ICT) components e.g., sensor nodes, actuator nodes, gateways, controllers, and operating softwarethat communicate with each other. The interoperability between these components is an essential characteristic for any greenhouse control system. A greenhouse control system could not work unless the components communicate via common interfaces. The TTAK.KO-06.0288 is an interface standard consisting of four parts. Notably, TTAK.KO-06.0288-Part3, which describes the interface between a greenhouse operating system (GOS) and a greenhouse control gateway (GCG), is the core standard of TTAK.KO-06.0288. The objectives of this study were to analyze the TTAK.KO-06.0288-Part3 standard, to suggest alternative solutions for identified issues, and to develop a library as a proof of the alternative solutions. Methods: The "data field" was analyzed using a comparative analysis method, since it is a data transmission unit of TTAK.KO-06.0288-Part3. It was compared with other parts of TTAK.KO-06.0288 in terms of definition, format, size, and possible values. Although TTAK.KO-06.0288-Part1 and TTAK.KO-06.0288-Part2 do not use a "data field," they have a similar data structure. That structure was compared with the "data field" of TTAK.KO-06.0288-Part3. Results: Twenty-one issues were identified across four categories: inter-standard issues, intra-standard issues, operational issues, and misprint issues. Since some of the issues can raise interoperability problems, 16 alternative solutions were suggested. In order to prove the alternative solutions, an open-source communication library called libtp3 was developed. The library passed 14 unit tests and was adapted to two research. Conclusions: Although TTAK.KO-06.0288-Part3 is an interface standard for communication between a GOS and a GCG, it might not communicate between different implementations because of the identified issues in the standard. These issues could be solved by the alternative solutions, which could be used to revise TTAK.KO-06.0288. In addition, a relevant organization should develop a program for compatibility testing and should pursue test products for smart greenhouses.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Database Design for IoT-based Greenhouse Systems

  • Kang, Chunghan;Yu, Seulgi;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.7 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Since 2000s, proper utilization of IoT (Internet of Things) technology is a key factor for a firm to become more competitive, and this stream is not exceptional for the food and agriculture industry. Along with this stream, Korea government organization, for example MAFRA (Ministry of Agriculture, Food and Rural Affairs), elected to adopt IoT technology, such as USN and RFID technologies, in the food and agriculture industry. Based on the IoT technology, MAFARA launched six "IoT based farm" project in 2007. IoT based farm project includes IoT based greenhouse system project, and it shows drastic efficiency in terms of cost reduction. When it comes to the productivity, however, the effect of IoT based greenhouse system is still ambiguous. In this regard, this study conducted systems analysis and design for IoT based tomato greenhouse in order to help farmers' decision making related to the productivity by establishing standardized database structure and designing output form to analyze productivity indices. Proposed systems analysis and design can be utilized as a data analysis tools by farmers. Productivity data from the proposed systems is can be used by researchers to identify the relationship among environment, plant growth and productivity. Policy makers also can refer to the data and output forms to predict the quantity of fruit during certain period and to revise production guideline more precisely.

A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation (박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Cheong, Jae-Woan;Choi, Gyeong Lee
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

Analysis of Light Environments in Reclaimed Land and Estimation of Spatial Light Distributions in Greenhouse by 3-D Model (간척지 광환경 특성 분석 및 3-D 모델을 통한 온실 내 공간적 광분포 예측)

  • Lee, June Woo;Shin, Jong Hwa;Kim, Jee Hoon;Park, Hyun Woo;Yu, In Ho;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2014
  • Reclaimed lands, expected as high-tech export horticultural complex, have unusual light environments due to sea fog. For adequate greenhouse design at reclaimed land, spatial light distributions in greenhouse should be required considering diffusive and direct lights. The objectives of this study were to analyze light environments and estimate spatial light distributions in greenhouse at reclaimed land by 3D greenhouse models. Total and diffusive lights were compared between reclaimed land and inland. For verification of the 3D greenhouse models, spatial light distributions and measured light intensities in greenhouse were compared with the estimated ones. Light environments at reclaimed land showed a higher diffusive irradiation than at inland, especially near sunrise and sunset. The estimated spatial light distributions in greenhouse showed good agreements with the measured ones. By using this method, we could estimate the average light intensity with time and spatial light distributions in greenhouse at specific outside light conditions. This result will be useful for analysis of light environments but also estimation of crop light inception in greenhouse at reclaimed land.

System Dynamics Application for the Evaluation of Greenhouse Gases Reduction Policy (시스템다이내믹스 기법을 이용한 온실가스 감축정책 평가)

  • Jang, Namjung;Kim, Min-Kyong;Yang, Go-Su
    • Korean System Dynamics Review
    • /
    • v.14 no.1
    • /
    • pp.55-68
    • /
    • 2013
  • It is necessary to evaluate the greenhouse gases (GHGs) reduction policy by central and regional governments to set up the suitable GHG emissions measures. Quantitative, qualitative and synthetic methods have been adopted by previous researches to estimate GHG reduction policy. However, these methods mostly focused on the results of the reduction policy, rather than understanding and fixing the integrated structures of GHG emissions. In this research, System Dynamics(SD) was applied to 1 million green homes program, self-carfree-day system and carbon point program. The results showed that SD analyses could be appliable for the estimation of GHG reduction policy by developing the feedback loops and dynamic simulation model. SD can be consider as a supplementary tool to estimate the GHG reduction policies through the recognition of the structure in complex real system.

  • PDF

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

Economical Feasibility of Cultivation under Structure Due to the Introduction of New and Renewable Energy -Comparative Analysis of Wood-Pellet, Geothermal Heat and Diesel- (신재생에너지 도입에 따른 시설재배의 경제성 분석 -목재팰릿, 지열과 경유의 비교분석을 중심으로-)

  • Kim, Hyung Woo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.255-268
    • /
    • 2014
  • We are now currently facing serious climate changes such as super typhoon, flood, intense heat, severe cold, super hurricane, drought, desertification, destruction of ecosystem, marine pollution, reduction of food production, destruction of tropical forests, exhaustion of water resources, climate refugees, etc. All of the above mainly derive from greenhouse gas exhaustion. Such harmful consequence might directly affect mankind's sustainable development. If we keep using resources that emits greenhouse gases, the global temperature will rise about $3.2^{\circ}C$ by year 2050. In case of $3^{\circ}C$ rise in temperature, it will result in abnormal climate which will bring about severe property damage. Moreover, 20~50% of the ecosystem will become extinct. As Korea's economy increasingly expands, so do our energy consumption rises. And because of the consequences that can be driven by increasing rate of resource use, not just Korea itself, but also the whole world should seriously concern about greenhouse gases. Although agricultural division only takes up about 3.2% of total greenhouse gas emission, the ministry of Agriculture, Food and Rural Affairs are taking voluntary actions to gradually reduce $CO_2$ and so does each and every related organizations. In order to reduce $CO_2$, introduction of new and renewable energy in farm house warming is crucial. In other words, implementing wood-pellet boiler and geothermal heat boiler can largly reduce $CO_2$ emission compared to diesel boiler. More importantly, not only wood-pellet and geothermal heat is pollution-free but they also have economic advantages some-what. In this thesis, the economic advantage and sustainablity will be introduced and proved through comparing practical analysis of surveyed farm house under structure employing wood-pellet boiler and geothermal heat boiler with Agriculture-Economic Statistic of 2012 who uses diesel boiler.