• Title/Summary/Keyword: Greenhouse Gas Inventory

Search Result 150, Processing Time 0.036 seconds

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

Greenhouse Gas Mitigation Effect Analysis by Cool Biz and Warm Biz (쿨맵시 및 온맵시 복장 착용에 의한 온실가스 감축 효과 분석)

  • Yeo, So-Young;Ryu, Ji-Yeon;Lee, Sue-Been;Kim, Dai-Gon;Hong, Yoo-Deog;Seong, Mi-Ae;Lee, Kyoung-Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.93-106
    • /
    • 2011
  • Republic of Korea officially announced its mid term reduction target which reduce about 30% of BAU GHG emission by 2020 in the 15th meeting of UNFCCC(COP 15) held in Copenhagen, Denmark 2009. To achieve this goal, it is necessary to understand the serious of climate change and take part in GHG reduction not only industry but also the nation. However, such positive participation in green life which may cause inconvenient of the life of the people. It should be accomplished with providing reliable information. This study suggests the scientific potentialities of GHG emission by guideline on low carbon life and green life to form and change a lifestyle suitable for coping with climate change. And also, this study quantitate the GHG reduction which may reduce demand for air conditioning by cool biz and warm biz. In Korea, this campaign has become known as 'CoolMaebsi' by Ministry of Environmental of Korea. 'CoolMaebsi' is a compound word of 'Cool' which means feel refreshed, and 'Maebsi' is a Korean word which means attire. Though this campaign is effective and significant to reduce the GHG emission yet there were no study on quantitative analysis. Therefore this study calculated reduced energy consumption and potential GHG emission by measuring variation of skin temperature. As the result, wearing warm biz and cool biz have an effect of reducing not only the energy consumption but also GHG emission. To achieve the low carbon society, it is necessary to improve the energy saving system and introduce the policy which guide to change a life style.

Analysis of Spatial Information Characteristics for Establishing Land Use, Land-Use Change and Forestry Matrix (Land Use, Land-Use Change and Forestry 매트릭스 작성을 위한 공간정보 특성 고찰)

  • HWANG, Jin-Hoo;JANG, Rae-Ik;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.44-55
    • /
    • 2018
  • The importance of establishing a greenhouse gas inventory is emerging for policymaking and its implementation to cope with climate change. Thus, it is needed to establish Approach 3 level Land Use, Land-Use Change and Forestry (LULUCF) matrix that is spatially explicit regarding land use classifications and changes. In this study, four types of spatial information suitable for establishing the LULUCF matrix were analyzed - Cadastral Map, Land Cover Map, Forest Map, and Biotope Map. This research analyzed the classification properties of each type of spatial information and compared the quantitative and qualitative characteristics of the maps in Boryeong city. Drawn from the conclusions of the quantitative comparison, the forest area showed the maximum difference of 50.42% ($303.79km^2$) in the forest map and 46.09%($276.65km^2$) in the cadastral map. The qualitative comparison drew five qualitative characteristics: data construction scope difference, data construction purpose difference, classification standard difference, and classification item difference. As a result of the study, it was evident that the biotope map was the most appropriate spatial information for the establishment of the LULUCF matrix. In addition, if the LULUCF matrix is made by integrating the biotope, the forest map, and the land cover map, the limitations of each spatial information would be improved. The accuracy of the LULUCF matrix is expected to be improved when the map of the level-3 land cover map and the biotope map of 1:5,000 covering the whole country are completed.

Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea

  • Ji, Eun-Sook;Park, Kyu-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1768-1774
    • /
    • 2012
  • This study was conducted to evaluate methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric $CH_4$ emissions and $CH_4$ and $N_2O$ emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average $CH_4$ emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average $CH_4$ emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average $N_2O$ emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average $CH_4$ emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions ($CO_2$-Eq), forecasted average $CO_2$-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average $CH_4$ emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased $CO_2$-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric $CH_4$ emissions, $CH_4$ and $N_2O$ emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total $CO_2$-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Rice (Oryza sativa L.) Production System (쌀의 생산과정에서 발생하는 탄소배출량 산정을 위한 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Shim, Kyo-Moon;Ryu, Jong-Hee;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of rice production system. The results of collecting data for establishing LCI D/B showed that organic fertilizer and chemical fertilizer input to 4.29E-01 kg $kg^{-1}$ rice and 2.30E-01 kg $kg^{-1}$ rice for rice cultivation. It was the highest value among input for rice cultivation. And direct field emission was 3.23E-02 kg $kg^{-1}$ during rice cropping. The results of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 8.70E-01 kg $CO_2$-eq. $kg^{-1}$ rice. Especially for 80% of $CO_2$ in the GHG and 7.02E-01 kg of its $CO_2$-eq. $kg^{-1}$ rice. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 13% and 5%, respectively. With LCIA (Life Cycle Impact Assessment) for rice cultivation system, it was observed that fertilizer process might be contributed to approximately 80% of GWP (global warming potential).

Korean Strategies for Establishing New MRV Schemes Applicable to Post-2020 Regime (Post-2020의 MRV 체계 수립을 위한 우리나라 대응 방향)

  • Kim, Seungdo;Ryu, SeungYun;Jung, Jaehyuk;Yoo, Beom-Sik
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.3-21
    • /
    • 2015
  • This paper attempts to determine the most reasonable and agreeable option for new MRV framework in Post-2020 Climate Regime as well as to develop South Korea strategies to reflect our national circumstances and capacities appropriately. The options for MRV framework considered here are 1) Dual MRV and 2) Unified MRV. We reached the conclusion that the Unified MRV framework may be the most reasonable option in the 2015 agreement in line with the objectives of MRV. To this end, it is essential to develop effective stepwise strategies consisted of: 1) reaching a consensus internally on the Unified MRV framework, 2) developing detailed procedures and methodologies to make the major elements of the Unified MRV framework understandable and predictable, 3) delivering an overview and blueprint to make sure of the flexibility of the Unified MRV framework to reflect the Parties' capacities and national circumstances, 4) ensuring the financial and technical support schemes for developing countries to improve the capacity-buildings of MRV, and 5) developing a realistic road map to successfully implement the Unified MRV scheme within the required time frame. Korea, as a rational mediator between developed and developing countries, should play a leading role in reaching post-2020 agreement.

  • PDF

Development and its Application for Energy Efficiency Operation Indicator and Energy Efficiency Design Index Monitoring System on the Ship (선박의 에너지효율운전지표와 에너지효율설계지수의 모니터링 시스템 개발과 그 응용)

  • Lee, Don-Chool;Kim, Eoue-Sek;Joo, Ki-Se;Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • Regard to the global warming, the shipping industries are progressed the dedicated endeavor to reduce greenhouse gas. As the study results of 2009 GHG study team, the $CO_2$ emission of shipping industries exceeded slightly 1.0 billion ton during one year(2007) and it is 3.3% of total $CO_2$ amount exhausted from all industries. This paper are introduced the energy efficiency design index / operation indicator monitoring system(EDiMS) which matched with EVAMOS software released by the dynamics laboratory of Mokpo maritime university. EDiMS can continuously be monitored amounts of $CO_2$, NOx, SOx, and PM emitted from ship and it can be applied as the useful tool of the inventory work of air pollution and the ship energy management plan for the mitigation or reduction of ship emission.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.