• 제목/요약/키워드: Green or Eco-composite

검색결과 6건 처리시간 0.021초

나노 실리카의 분무건조를 이용한 중공구 입자 제조와 실리카중공구의 열전달 특성 (Preparation of Hollow Silica by Spray Drying of Nano Silica Particles and Its Heat Transfer Property)

  • 윤찬기;임형미;차수진;김대성;이승호
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.531-538
    • /
    • 2012
  • Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and $TiO_2$ for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the $TiO_2$ is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of $TiO_2$.

홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성 (Use and advantage of Red algae fiber as reinforcement of Biocomposite)

  • 이민우;서영범;한성옥
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2007년도 추계학술발표논문집
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성 (Use of Red Algae Fiber as Reinforcement of Biocomposite)

  • 이민우;서영범;한성옥
    • 펄프종이기술
    • /
    • 제40권1호
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

Structural Properties of Steel-glulam Composite Column

  • Jang, Sang-Sik;Kim, Yun-Hui;Shin, Il-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권5호
    • /
    • pp.399-404
    • /
    • 2010
  • A new green home designed to save money while at the same time saving the environment with some of the finest green features available in the market. Composite column composed of structural steel and structural glued laminated timber is avery Eco-friendly building products for design building because that use recycled or second hand. For compare to compressive strength of structural glued laminated timber (glulam), structural steel, and composite column (steel-glulam), tested compressive strength of each specimen. 1) structural glued laminated timber : Theoretical compressive strength is 151.6 kN similar to elastic limits. 2) structural steel (H type) : Theoretical compressive strength is 148.2 kN little under the elastic limits. 3) structural steel (D type) : Theoretical compressive strength is 147.3 kN upper than the elastic limits. 4) composite column : Actual elastic limits are about 600 kN. Result in, composite column improve compressive strength of Structural steel column and provide structural stability of the building.

합성 PC부재에 의한 그린 프레임의 철근물량 산출 자동화 알고리즘 (Automatic Algorithms of Rebar Quantity Take-Off of Green Frame by Composite Precast Concrete Members)

  • 이성호;김선형;이군재;김선국;주진규
    • 한국건설관리학회논문집
    • /
    • 제13권1호
    • /
    • pp.118-128
    • /
    • 2012
  • 1980년대 이후 국내 아파트에서 적용되어온 벽식구조는 리모델링 시 많은 문제점을 유발시켜 정부에서는 법적 인센티브를 제공하며 무량판 및 라멘구조를 장려하고 있다. 이에 따라 기존의 골조의 문제점을 개선한 친환경 라멘조인 그린 프레임이 개발되어 구조적 안전성 뿐 아니라 시공성, 친환경성에 대한 검증이 이루어졌다. 그린프레임의 경우 설계단계에서 작성된 프리캐스트 콘크리트(Precast Concrete; PC) 부재 정보를 이용하여 물량 산출 및 철근 가공도(bar bending schedule) 등을 자동으로 작성하면 인력저감 뿐 아니라 철근 손율(loss)을 줄이는 철근조합을 용이하게 수행할 수 있다. 따라서 본 연구는 합성 PC부재에 의해 설계된 그린 프레임의 철근물량 산출 자동화 알고리즘을 개발하는 것을 목적으로 한다. 철근물량 산출자동화 알고리즘은 구조 설계정보, 시방정보, 합성PC의 철골정보 등을 이용하여 작성한 후 사례현장 적용을 통하여 개발된 알고리즘의 효용성을 증명한다. 개발된 알고리즘에 의해 저장된 정보는 철근가공조립도, 철근 재단 리스트(bar cutting list)작성 자동화 뿐 아니라 철근 손율을 최소화 할 수 있는 최적조합과 주문물량 산출 자동화에도 활용될 것이다. 또한 공사관리인력 저감 뿐 아니라 철근 손율 최소화 관리에 따른 공사 원가절감의 효과를 기대할 수 있다.

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl;Min, Byeong Ho;Kim, Dae Sung;Choi, Byung-Ki
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.248-255
    • /
    • 2019
  • Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.