• Title/Summary/Keyword: Green computing

Search Result 112, Processing Time 0.026 seconds

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

Development of Diffusive Wave Rainfall-Runoff Model Based on CUDA FORTRAN (CUDA FORTEAN기반 확산파 강우유출모형 개발)

  • Kim, Boram;Kim, Hyeong-Jun;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.287-287
    • /
    • 2021
  • 본 연구에서는 CUDA(Compute Unified Device Architecture) 포트란을 이용하여 확산파 강우 유출모형을 개발하였다. CUDA 포트란은 그래픽 처리 장치(Graphic Processing Unit: GPU)에서 수행하는 병렬 연산 알고리즘을 포트란 언어를 사용하여 작성할 수 있도록 하는 GPU상의 범용계산(General-Purpose Computing on Graphics Processing Units: GPGPU) 기술이다. GPU는 그래픽 처리 작업에 특화된 다수의 산술 논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 이에 따라, CUDA 포트란기반 확산파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시킬 수 있다. 분포형모형의 지배방정식은 확산파모형과 Green-Ampt모형으로 구성되었고, 확산파모형은 유한체적법을 이용하여 이산화 하였다. CUDA 포트란기반 확산파모형의 정확성은 기존 연구된 수리실험 결과 및 CPU기반 강우유출모형과 비교하였으며, 연산소요시간에 대한 효율성은 CPU기반 확산파모형과 비교하였다. 그 결과 CUDA 포트란기반 확산파모형의 결과는 수리실험 결과 및 CPU기반 강우유출모형의 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반 확산파모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

G-RAID: A Green RAID Mechanism for enhancing Energy-Efficiency in Massive Storage System (G-RAID: 대용량 저장장치에서 에너지 효율향상을 위한 그린 RAID 기법)

  • Kim, Young-Hwan;Suck, Jin-Sun;Park, Chang-Won;Hong, Ji-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.21-30
    • /
    • 2011
  • In the global IT market, a lot of issues for responding to various environmental regulations emerged. In case of the data centers, it is consuming huge amounts of energy to maintain. So there have been various technical attempts as Consolidation, Virtualization, Optimization to efficiently manage energy and data storage to fix the problems. In this paper, we propose a new RAID(Redundant Array of Independent Disks) mechanism which is differing the intensity of power consumption and works to provide data protection and disaster recovery(backup, mirroring etc.) to stratify multiple volumes. G-RAID minimize the power consumption and the lower of I/O performance by selecting the volume depending on the frequency of data access while classifying the power consumption between volumes in storage system. Also, it is possible that a filesystem and block map information of G-RAID is processed by basic unit which is group located in a row for the blocks to work efficiently and can minimize the performance degradation of block mapping load by the access frequency in each groups. As a result, we obtained to elevate a little bit of response time caused by block relocation work, but showed the decrease of power consumption by 38%.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut (GrabCut의 자동 객체 추출을 위한 저주파 영역 탐지 기반의 윈도우 생성 기법)

  • Yoo, Tae-Hoon;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.211-217
    • /
    • 2012
  • Conventional GrabCut algorithm is semi-automatic algorithm that user must be set rectangle window surrounds the object. This paper studied automatic object detection to solve these problem by detecting salient region based on Human Visual System. Saliency map is computed using Lab color space which is based on color opposing theory of 'red-green' and 'blue-yellow'. Then Saliency Points are computed from the boundaries of Low-Frequency region that are extracted from Saliency Map. Finally, Rectangle windows are obtained from coordinate value of Saliency Points and these windows are used in GrabCut algorithm to extract objects. Through various experiments, the proposed algorithm computing rectangle windows of salient region and extracting objects has been proved.

A Study on Feature Information Parsing of Video Image Using Improved Moment Invariant (향상된 불변모멘트를 이용한 동영상 이미지의 특징정보 분석에 관한 연구)

  • Lee, Chang-Soo;Jun, Moon-Seog
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.450-460
    • /
    • 2005
  • Today, multimedia information is used on the internet and various social areas by rapid development of computer and communication technology. Therefor, the usage is growing dramatically. Multimedia information analysis system is basically based on text. So, there are many difficult problems like expressing ambiguity of multimedia information, excessive burden of works in appending notes and a lack of objectivity. In this study, we suggest a method which uses color and shape information of multimedia image partitions efficiently analyze a large amount of multimedia information. Partitions use field growth and union method. To extract color information, we use distinctive information which matches with a representative color from converting process from RGB(Red Green Blue) to HSI(Hue Saturation Intensity). Also, we use IMI(Improved Moment Invariants) which target to only outline pixels of an object and execute computing as shape information.

  • PDF

A Technology of Context-aware based Building Management for Energy Efficiency (에너지 효율화를 위한 상황인지 기반 건물 관리 기술)

  • Lee, Hyunjeong;Han, Jinsoo;Jeong, Youn-Kwae;Lee, Il-Woo;Lee, Sang Ho
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • As the global warming and climate change cause the various social problems, such as disasters, abnormal temperature and diseases, technologies and studies for energy conservation and efficiency are increased. Energy use in buildings accounted for 22% of national energy use, so energy saving technology is promoted for residence, commercial and public buildings. Existing methods for energy conservation are passive ways, in that they consider heat loss and low-energy equipment. In recent years, active technologies emerge by converging with ICT, which detect and remove the energy waste situation by measuring, monitoring and controlling the energy use. In this paper, we describe technology trends for building energy optimization and investigates issues for active energy savings.

  • PDF

An Analysis of the Hydroelastic Response of Large Floating Structures in Oblique Waves (사파중에 놓인 거대 부유체의 응답에 대한 유탄성 해석)

  • In-H. Sim;Jae-D. Yoon;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • In this paper, the fluid-structure interaction of large floating structures has been rigorously analyzed and the shear effect on the structural deformation has been investigated in oblique waves. A constant panel method(CPM) based on the Green function method is implemented for computing the hydrodynamic pressure, while a finite element method(FEM) is applied for the structural response based on the Mindlin plate theory with including shear deformation. In order to validate the method, we compared numerical results with experimental ones of Mega Float carried out by Yago & Endo in head waves. General behavior shows good agreement but the local displacement at the ends is slightly different. The numerical results show that the radiation pressure due to the fluid-structure interaction is locally larger than that of wave excitation and mooring devices greatly reduce the response. It is observed that the shear effects among the total deformation constitutes about 4% in the case of Mega Float in oblique waves.

  • PDF

Introduction of the New Evaluation Criteria in the Forest Sector of Environmental Conservation Value Map Using LiDAR (LiDAR를 활용한 국토환경성평가지도 산림부문 신규 평가항목의 도입 가능성 평가)

  • Jeon, Seong-Woo;Hong, Hyun-Jung;Lee, Chong-Soo;Lee, Woo-Kyun;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.20-30
    • /
    • 2007
  • Environmental Conservation Value Assessment Map (ECVAM) is the class map to divide the national land into conservation areas and development areas based on legal and ecological assessment criteria. It contributes to enhancements of the efficiency and the scientificity when framing a policy in various fields including the environment. However, it is impossible to understand the multiphase vegetation structure as data on judging the national forest class in ECVAM are restricted to areal information of Ecological Nature Status, Degree of Green Naturality and Forest Map. This point drops the reliability of ECVAM. Therefore we constructed vegetation information using LiDAR (Light Detection And Raging) technology. We generated Biomass Class Maps as final results of this study, to introduce the new forest assessment criterion in ECVAM that alternates or makes up for existing forest assessment criteria. And then, we compared these with Forest Map and Landsat TM NDVI image. As a result, biomass classes are generally higher than stand age classes and DBH classes of Vegetation Map, and lower than NDVI of Landsat TM image because of the difference of time on data construction. However distributions between these classes are mostly similar. Therefore we estimates that it is possible to apply the biomass item to the new forest assessment criterion of ECVAM. The introduction of the biomass in ECVAM makes it useful to detect the vegetation succession, to adjust the class of the changed zone since the production of Vegetation Map and to rectify the class error of Vegetation Map because variations on tree heights, forest area, gaps between trees, vegetation vitality and so on are acquired as interim findings in process of computing biomass.

Development of a Bi-objective Cycle-free Signal Timing Model Using Genetic Algorithm (유전자 알고리즘을 이용한 이중목적 주기변동 신호시간 결정 모형 개발)

  • 최완석;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.81-98
    • /
    • 2002
  • This paper documents the development of a bi-objective(minimizing delays and Queue lengths) cycle-free signal timing length model using Genetic Algorithm. The model was embodied using MATLAB. the language of technical computing. A special feature of this model is its ability to concurrently manage delays and queue lengths of turning movement concurrently. The model produces a cycle-free signal timing(cycles and green times) for each intersection on the cycle basis. Appropriate offsets could be also accomplished by applying cycle-free based signal timings for respective intersections. The model was applied to an example network which consists of four intersections. The result shows that the model produces superior signal timings to the existing signal timing model in terms of managing delays and queue lengths of turning movements.