• Title/Summary/Keyword: Green Culture

Search Result 1,006, Processing Time 0.03 seconds

Home Energy Management System for Residential Customer: Present Status and Limitation

  • Lee, Sunguk;Park, Byungjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 2018
  • As environmental pollution has become worse green technologies to replace or reduce consumption of fossil fuel get spotlight from government, industry and academia globally. It is reported that 40% of carbon dioxide emission is caused by electricity power generation. And 37% of end user electricity power is used by residential costumer in US. Smart Grid is considered as one of promising technology to alleviate severe environmental problem. In residential environment, Home Energy Management System (HEMS) can play a key role for green smart home. The HEMS can give several benefits like aslowering electric utility bill, improvement of efficiency of electric power consumption and integration of generator using renewable energy resources. However just limited functions of HEMS can be used for residential customer in real life because of lack of smart function in home appliances and optimal managing software for HEMS. This study provides comprehensive analysis for Home Energy Management System for residential customer. Simple HEMS system with real products on the market are explained and limitation of current HEMS are also discussed.

First Finding of a Bivalve-Inhabiting Hydrozoan (Cnidaria, Hydrozoa) from Korea

  • Kubota, Shin;Lee, Jimin;Chang, Cheon Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.35 no.2
    • /
    • pp.57-62
    • /
    • 2019
  • Eutima japonica Uchida, 1925, a bivalve-inhabiting hydrozoan was collected for the first time in Korea, associating with Mytilus galloprovincialis. The morphology of male medusae of this hydrozoan is clarified by culture and described as well as other developmental stages. As the present material from Korea is in good accord with that of the northern Japanese form of E. japonica, so the geographical distribution of the northern form of this species is widened, Japan, China and Korea. Green fluorescent protein distribution pattern of this medusa is also described and compared with that of the most related species Eutima sapinhoa Narchi and Hebling, 1975.

Suppression of green mold disease on oak mushroom cultivation by antifungal peptides (항진균성 펩티드에 의한 표고버섯 푸른곰팡이병의 억제)

  • Lee, Hyoung-Jin;Yun, Yeong-Bae;Huh, Jeong-Hoon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Contamination and growth of Trichoderma, a green mold, on the oak log and wooden chip or sawdust media can severely inhibit the growth of oak mushroom. Chemicals including pesticides and antibiotics are generally not allowed for the control of green mold disease during mushroom cultivation. In this study, bacterial pathogens causing blotch disease on the oyster mushrooms were isolated and their peptide toxins were purified for the control of green mold disease. Strains of Pseudomonas tolaasii secret various peptide toxins, tolaasin and its structural analogues, having antifungal activities. These peptides have shown no effects on the growth of oak mushrooms. When the peptide toxins were applied to the green mold, Trichoderma harzianum H1, they inhibited the growth of green molds. Among the 20 strains of peptide-forming P. tolaasii, strong, moderate, and weak antifungal activities were measured from 8, 5, and 7 strains, respectively. During oak mushroom cultivation, bacterial culture supernatants containing the peptide toxins were sprayed on the aerial mycelia of green molds grown on the surface of sawdust media. The culture supernatants were able to suppress the fungal growth of green molds while no effect was observed on the mushroom growth and production. They changed the color of molds from white aerial mycelium into yellowish dried scab, representing the powerful anti-fungal and sterilization activities of peptide toxins.

Content Analysis of Chungtaejeon Tea and Green Tea Produced in Jangheung District (장흥지역 청태전과 녹차의 성분분석)

  • Park, Yong-Seo;Lee, Mi-Kyung;Ryu, Hyeun-Hee;Heo, Buk-Gu
    • The Korean Journal of Community Living Science
    • /
    • v.19 no.1
    • /
    • pp.55-61
    • /
    • 2008
  • This study was conducted to compare the nutrient and chemical contents of traditional Chungtaejeon tea with that of green tea which was harvested in Jangheung, Jeonnam district. Vitamin C, amino acids and total nitrogen contents of Chungtaejeon tea were lower than that of green tea by 0.30, 2.30 and 4.20g/100g, respectively. The tannin, caffeine, reducing sugar and chlorophyll contents in Chungtaejeon tea were the same as those in green tea. Comparing catechin contents, catechin (C), epicatechin (EC), and epigallocatechin (EGC) in Chungtaejeon tea were lower than those of green tea. However, gallocatechin (GC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG) and catechin gallate (CG) showed no significant difference between Chungtaejeon tea and green tea. The flavonoid contents of Chungtaejeon tea and green tea showed higher quercetin and kaempferol contents in green tea, and higher myricetin content in Chungtaejeon tea. The measured amino acid contents for threonine and aspartic acid were lower, and for glutamic acid were higher in Chungtaejeon tea compared with those in green tea. However, free amino acid content in Chungtaejeon tea and green tea showed no significant difference. Potassium and magnesium contents in Chungtaejeon tea were lower compared to green tea but no significant difference was found for iron, manganese or calcium contents when comparing the two teas.

  • PDF

Detection of flavonoid compounds by cell culture of Ginkgo biloba L (은행(Ginkgo biloba L.)의 세포배양에 의한 Flavonoid류의 검출)

  • 김광수;백윤웅
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Calli induced from Ginkgo bilha L. were cultured to investigate optimal culture conditions and identify the possibility production of useful compounds. Calli were obtained from leaves and stems of Ginkgo biloba seedlings and embryos on WP medium supplemented with 2mg/$\ell$ NAA and 5mg/$\ell$ kinetin. Chlorophyll-ricked green callus was inducted in MS liquid medium containing 1mg/$\ell$ NAA and 0.1mg/$\ell$ kinetin under light as 3 clones selected with origin. Embryo derived callus showed the highest growth rate. Analysis for flavonoids and their precursor was performed by TLC and EMS. A specific precursor of flavonoid was identified in callus, not in natural leaves. These findings indicate that tissue culture may produce rlavonoids.

  • PDF

Mixotrophic Cultivation of Marine Alga Tetraselmis sp. Using Glycerol and Its Effects on the Characteristics of Produced Biodiesel

  • Dang, Nhat Minh;Kim, Garam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.222-228
    • /
    • 2022
  • As a possible feedstock for biodiesel, the marine green alga Tetraselmis sp. was cultivated under different conditions of phototrophic, mixotrophic and heterotrophic cultures. Glycerol, a byproduct from biodiesel production process, was used as the carbon source of mixotrophic and heterotrophic culture. The effects of glycerol supply and nitrate-repletion were compared for different trophic conditions. Mixotrophic cultivation exhibited higher biomass productivity than that of phototrophic and heterotrophic cultivation. Maximum lipid productivity of 55.5 mg L-1 d-1 was obtained in the mixotrophic culture with 5 g L-1 of glycerol and 8.8 mM of nitrate due to the enhancement of both biomass and lipid accumulation. The major fatty acid methyl esters (FAME) in the produced biodiesel were palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). The degree of unsaturation was affected by different culture conditions. The biodiesel properties predicted by correlation equations based on the FAME profiles mostly complied with the specifications from the US, Europe and Korea, with the exception of the cold-filter plugging point (CFPP) criterion of Korea.

Study on the Environmental Factor Analysis of Interior Material using Hanji (한지 소재 내장재의 친환경적 요소 분석 연구)

  • Kim, Ji-Soo;Lee, Yu-Ra;Lim, Hyun-A
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Hanji has known for its high qualities for more than thousand years. Hanji is stronger, and has better durability, air permeability, flexibility, thermal insulation, soundproofs and UV absorbability. Therefore, developing industrial interior finishing materials using Hanji is replaced with the PVC (Poly-Vinyl Chloride) materials instead, it will be a new environment-friendly material and positively represents Korean brand marketing. The industrial inter-construction material is discomposed by heat or light because of material characteristics. As a result, it emits a lot of noxious substances. Hanji is essentially a neutral paper since it does not rely on any acidic chemicals of artificial bleaching methods. Hanji is also known as the living paper because of its close relation to nature. Therefore, I would like to suggest that Hanji made from alternative material as a chicken fiber. It will be a non-polluting interior finishing materials by making use of Hanji to a taste of Korean culture in the green industry around the world. Rather than PVC used commonly in construction material, kitchen and office furniture, interior materials in the subway, trains, or other vessels, credit cards, and ID cards, I created an interior construction material by using patented Hanji. This will be increased the value of usefulness in the environment-friendly green industry instead of PVC.

  • PDF

Development of Miniaturized Culture Systems for Large Screening of Mycelial Fungal Cells of Aspergillus terreus Producing Itaconic Acid

  • Shin, Woo-Shik;Lee, Dohoon;Kim, Sangyong;Jeong, Yong-Seob;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • The task of improving a fungal strain is highly time-consuming due to the requirement of a large number of flasks in order to obtain a library with enough diversity. In addition, fermentations (particularly those for fungal cells) are typically performed in high-volume (100-250 ml) shake-flasks. In this study, for large and rapid screening of itaconic acid (IA) high-yielding mutants of Aspergillus terreus, a miniaturized culture method was developed using 12-well and 24-well microtiter plates (MTPs, working volume = 1-2 ml). These miniaturized MTP fermentations were successful, only when highly filamentous forms were induced in the growth cultures. Under these conditions, loose-pelleted morphologies of optimum sizes (less than 0.5 mm in diameter) were casually induced in the MTP production cultures, which turned out to be the prerequisite for the active IA biosynthesis by the mutated strains in the miniaturized fermentations. Another crucial factor for successful MTP fermentation was to supply an optimal amount of dissolved oxygen into the fermentation broth through increasing the agitation speed (240 rpm) and reducing the working volume (1 ml) of each 24-well microtiter plate. Notably, almost identical fermentation physiologies resulted in the 250 ml shake-flasks, as well as in the 12-well and 24-well MTP cultures conducted under the respective optimum conditions, as expressed in terms of the distribution of IA productivity of each mutant. These results reveal that MTP cultures could be considered as viable alternatives for the labor-intensive shake-flask fermentations even for filamentous fungal cells, leading to the rapid development of IA high-yield mutant strains.

Comparison of Biomass Productivity of Two Green Microalgae through Continuous Cultivation (두 종 미세 녹조류의 연속배양을 통한 바이오매스 생산성 비교)

  • Gim, Geun-Ho;Lee, Young-Mi;Kim, Duk-Jin;Jeong, Sang-Hwa;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • In the present study, the biomass productivity of two green microalgae (Chlorella sp. and Dunaliella salina DCCBC2) were assessed in a 12 L tubular photobioreactor under optimum culture conditions. In the batch culture optimization process, the Chlorella sp. biomass was obtained as 1.2 g/L under atmospheric air as a sole $CO_2$ source and other culture conditions as follows: light intensity, temperature, pH, $NH_4Cl$ and $K_2HPO_4$ were 100 ${\mu}E/m^2/s$, $27^{\circ}C$, 7.0, 20.0 mM and 2.0 mM, respectively. On the other hand, 2.9 g/L of D. salina DCCBC2 biomass production was observed under the following conditions: light intensity, temperature, pH, $KNO_3$ and $K_2HPO_4$were 80 ${\mu}E/m^2/s$, $27^{\circ}C$, 8.0, 3.0 mM and 0.025 mM, respectively. At 1% $CO_2$ supply to the reactor, the Chlorella sp. production was reached 1.53 g/L with 25% increment under the same operating conditions. In addition, the maximum D. salina DCCBC2 biomass was observed as 3.40 g/L at 3% $CO_2$ concentration. Based on the aforementioned optimized conditions, the dilution rate and maximal biomass productivity of Chlorella sp. and D. salina DCCBC2 in the continuous cultivation were 0.4/d and 0.6 g/L/d and 0.6/d and 1.5 g/L/d, respectively.