에지검출은 영상처리와 컴퓨터비젼의 매우 중요한 연구분야이다. 그리고 일반적인 에지검출 연산자인 Robert, Sobel, Kirsh등의 연산자는 계단에지를 검출하는데는 적합하나 잡음에 매우 민감한 단점을 가지고 있다. 따라서 본 논문에서는 영상정보척도와 신경회로망을 이용한 잡음에 매우 강한 계단에지 검출방법을 제안한다. 계단에지의 명암도 분포의 차, 방향성, 연속성, 구조성 등의 계단에지의 기본적인 정보특성을 이용한 함수를 BP 신경회로망의 입력벡터로 구성한 결과 매우 위치가 정확한 계단에지를 얻을 수 있었다. 또한 실험 영상으로 장미 영상과 세포영상을 사용하여 매우 만족스런 실험 결과를 얻을 수 있었다.
본 논문에서는 의료용 in-body WBAN (Wireless Body Area Network) 시스템을 위한 GM (Group Manchester code) 변조 방식을 제안한다. 현재 IEEE에서는 WBAN 시스템을 802.15. TG (Task Group) 6로 지정하고 이에 관한 표준화를 진행하고 있다. 높은 전력 효율이 요구되는 WBAN 시스템을 위해 최근 표준화 그룹에서는 PPM(Pulse Position Modulation) 신호 간의 grouping을 통하여 전송률 이득을 얻을 수 있는 GPPM (Group Pulse Position Modulation) 변조 방식이 제안된 바 있으나, 기존 GPPM 방식은 복조 과정의 SNR 손실 및 gray coding의 부재로 인한 BER 성능 열화가 나타나는 단점이 존재한다. 따라서 본 논문에서는 PPM 보다 잡음 성능이 우수한 Manchester code를 기반으로, GM 방식의 BER 성능 최대화를 위한 복조 방식 및 turbo coded GM을 위한 LLR (Log Likelihood Ratio) 판정 방식을 제안하였으며, 다양한 성능 2 분석을 통해 제안된 방식의 우수성을 입증하였다.
본 논문에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 프로그래밍 경험이 없는 사용자가 쉽게 제작할 수 있도록 하는 콘텐츠 제작 프레임워크를 제안한다. 제안 프레임워크에서 사용자는 사용하는 제스처와 이에 반응하는 미디어의 효과를 번호로 정의하고, 텍스트 기반의 구성 파일에서 이를 연결한다. 제안 프레임워크에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 사용자의 위치를 추적하여 프로젝션 시키기 위하여 동적 프로젝션 맵핑 모듈과 연결하였다. 또한, 제스처 인식을 위한 처리 속도와 메모리 부담을 줄이기 위하여 사용자의 움직임을 그레이 스케일(gray scale)의 모션 히스토리 이미지(Motion history image)로 표현하고, 이를 입력 데이터로 사용하는 제스처 인식을 위한 합성곱 신경망(Convolutional Neural Network) 모델을 설계하였다. 5가지 제스처를 인식하는 실험을 통하여 합성곱 신경망 모델의 계층수와 하이퍼파라미터를 결정하고 이를 제안 프레임워크에 적용하였다. 제스처 인식 실험에서 97.96%의 인식률과 12.04 FPS의 처리속도를 획득하였고, 3가지 파티클 효과와 연결한 실험에서 사용자의 움직임에 따라 의도하는 적절한 미디어 효과가 실시간으로 보임을 확인하였다.
This paper presents a Fuzzy Neural Network (FNN) system to decide whether or not the right information of lanes can be extracted from gray-level images of road scene. The decision of noisy level of input images has been required because much noises usually deteriorates the performance of feature detection based on image processing and lead to erroneous results. As input parameters to FNN, eight noisiness indexes are constructed from a cumulative distribution function (CDF) and proved the indexes being classifiers of images as the good and the bad corrupted by sources of noise by correlation analysis between input images and the indexes. Considering real-time processing and discrimination efficiency, the proposed FNN is structured by eight input parameters, three fuzzy variables and single output. We conduct much experiments and show that our system has comparable performance in terms of false-positive rates.
In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.
A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.
본 논문에서는 공간의존행렬과 신경망을 이용하여 문서영상에서 인식대상 문자가 포함되어 있는 블록들을 좀더 세분해 낼 수 있는 효과적인 방법을 제시 하였다. 제안 된 방법은 명암도 문서블록에서 공간의존행렬을 구하고 7가지 질감 특징을 추출한 뒤 신경망을 이용해 문서블록을 9가지 유형으로 분류할 수 있도록 하였다. 특히 기존에는 비문자영역으로 분류되던 수식, 도표, 순서도 등 주로 문자가 포함되어 있는 블록들을 세분해 낼 수 있도록 하였다. 또한 신경망 학습알고리즘인 BP 를 사용함으로써 기존의 선형분류시에 요구되던 유형별 임계값과 선형면결정지수를 찾는 어려움을 해소하였다. 명암도영상을 이진화하기 전에 먼저 Sobel연산을 적용함으로써 문서 뒷면에 의한 배경 잡음의 영향을 줄일 수 있도록 하였고, 교차 문지르기 후 분할함으로써 블록이 작은 조각으로 나누어지는 것을 방지하도록 하였다. 실험결과 제안한 방법에서는 문자가 포 함되어 있는 블록은 큰 문자, 중간문자, 작은 문자블록 및 수식, 순서도, 도표블록의 6가지로, 그리고 비문자블록은 인물사진, 그래프 등 3가지 유형으로 상세하게 분류 할수 堞있었으며 전체적인 분류성능도 우수함을 확인할 수 있었다.
Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
Journal of Biosystems Engineering
/
제37권4호
/
pp.271-278
/
2012
Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.
이 연구에서는 Inception V3, SqueezeNet(local), VGG-16, Painters 및 DeepLoc의 다섯 가지 인공지능(AI) 모델을 사용하여 차나무 잎의 병해를 분류하였다. 여덟 가지 이미지 카테고리를 사용하였는데, healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot였다. 이 연구에서 사용한 소프트웨어는 데이터 시각적 프로그래밍을 위한 파이썬 라이브러리로 작동하는 Orange3였다. 이는 데이터를 시각적으로 조작하여 분석하기 위한 워크플로를 생성하는 인터페이스를 통해 작동되었다. 각 AI 모델의 정확도로 최적의 AI 모델을 선택하였다. 모든 모델은 Adam 최적화, ReLU 활성화 함수, 은닉 레이어에 100개의 뉴런, 신경망의 최대 반복 횟수가 200회, 그리고 0.0001 정규화를 사용하여 훈련되었다. Orange3 기능을 확장하기 위해 새로운 이미지 분석 Add-on을 설치하였다. 훈련 모델에서는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 신경망(neural network), 테스트 및 점수(test and score), 혼동 행렬(confusion matrix) 위젯이 사용되었으며, 예측에는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 예측(prediction) 및 이미지 뷰어(image viewer) 위젯이 사용되었다. 다섯 AI 모델[Inception V3, SqueezeNet(로컬), VGG-16, Painters 및 DeepLoc]의 신경망 정밀도는 각각 0.807, 0.901, 0.780, 0.800 및 0.771이었다. 결론적으로 SqueezeNet(local) 모델이 차나무 잎 이미지를 사용하여 차병해 탐색을 위한 최적 AI 모델로 선택되었으며, 정확도와 혼동 행렬을 통해 뛰어난 성능을 보였다.
자기공명영상과 계층적 신경망을 이용하여 간경변증을 단계별로 분류하고자 하였다. 내원한 231명의 데이터를 분석하였으며, 각 단계별 분류는 정상,1, 2, 3단계로 분류하였다. TI강조 자기공명 간 영상으로부터 정상 간 실질과 간 경변 결절을 추출하고, 간 경화증의 단계를 객관적으로 해석 분류하였다. 간 경변 분류기 구현은 계층적 신경망을 이용하였고, 명암도 분석과 간 결절 특성을 통하여 정상간과 3단계의 간 경변으로 구분하였다. 제안한 신경망 분류기는 오류 역전파 알고리듬을 이용하였다. 분류결과 인식율이 정상군은 $100\%$, 1 단계는 $82.8\%$, 2 단계는 $87.1\%$, 3 단계는 $84.2\%$의 분류율을 나타내었다. 신경망 분류 결과와 전문의 판독 결과를 서로 비교한 결과 인식률은 매우 높게 나타났다. 만일 더욱더 충분한 데이터나 파라미터를 가지고 지속적으로 수행한다면 간 경변 환자들에게 임상적으로 지원하는 도구뿐만 아니라 의료전문 신경망으로도 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.