본 논문에서는 한국어 숫자음 인식을 위해 음성과 영상 정보를 사용하고, 음성에 사용하는 선형예측계수 알고리즘을 영상에 적용하는 방법을 제안한다. 입력으로 얻어지는 음성신호는 0.95의 매개변수를 통해 고역 신호가 강조되고, 해밍창과 자기상관 분석, Levinson-Durbin 알고리즘에 의해 13차 선형예측계수를 구한다. 마찬가지로, 그레이 영상신호도, 음성의 자기상관 분석, Levinson-Durbin 알고리즘을 사용하여 13차의 2차원 선형예측계수를 구한다, 이러한 음성/영상 신호에 대한 선형예측계수들은 다층 신경회로망에 적용하여 학습이 이루어졌고, 각 레벨의 잡음이 섞인 음성신호를 적용한 결과, 숫자음 '3', '5', '9' 에서 음성만으로 인식한 결과보다 훨씬 좋은 인식결과를 얻을 수 있었다. 결과적으로, 본 연구에서는 영상 신호의 2차원 선형 예측 계수들이 음성인식에 사용될 경우, 특징 추출에 따른 부가적인 알고리즘이 새로 고안될 필요가 없이, 음성특징 계수를 추출하는 방법을 그대로 사용할 수 있으며, 또한 데이터량과 인식율이 잡음 환경에서 보다 향상되는 효율적인 방법을 제시하고 있음을 알 수 있었다.
기술의 발달로 의료장비의 현대화가 이루어지고 PACS와 같은 시스템이 보편화되면서 디지털 의료영상처리 기술에 대한 관심이 높아지고 있다. 영역분할 기술은 디지털의료영상처리에서 첫 번째 단계로 필요한 전처리기술이다. 영역분할을 통하여 특정 부위가 종양, 부종, 파손 및 괴사세포와 같은 이상 현상을 나타내는 것을 조기에 발견할 수 있도록 해주고, 의사들이 적절한 처방을 내려줄 수 있도록 도와줄 수 있다. 특히 두뇌영상에서 백질, 회백질 및 CSF(cerebral spinal fluid)의 영역분할은 두뇌연구의 핵심기술이다. 이들 의료영상에서 기존의 윤곽선이나 영역 확장법은 애매한 경계선과 장기내의 물리적 특성이 비균질하여 영역분할의 실패율을 높게 한다. 퍼지기반의 영역분할 알고리듬은 불분명한 경계를 이루는 장기의 영역분할에 강하다고 알려져 있다. 본 연구에서는 자기공명영상이 강하게 나타내는 잡음에도 안정적인 퍼지기반의 영역분할 알고리듬을 제안하였다. 제안된 알고리듬은 이웃화소들을 군집시킬 때에 평균과 분산의 정보를 이용하여 최소한의 계산을 추가함으로써, 기존의 퍼지기반 영역분할 방법에 비하여 실패율이 대략 30% 이하로 낮은 것을 확인하였다.
본 논문에서는 이진영상과 이진커널을 사용하여 컨볼루션, 풀링, ReLU 연산을 수행하는 이진 CNN 연산 알고리즘을 제안한다. 256 그레이스케일 영상을 8개의 비트평면으로 분해하고, -1과 1로 구성되는 이진커널을 사용하는 방법이다. 이진영상과 이진커널의 컨볼루션 연산은 가산과 감산으로 수행한다. 논리적으로는 XNOR 연산과 비교기로 구성되는 이진연산 알고리즘이다. ReLU와 풀링 연산은 각각 XNOR와 OR 논리연산으로 수행한다. 본 논문에서 제안한 알고리즘의 유용성을 증명하기 위한 실험을 통해, CNN 연산을 이진 논리연산으로 변환하여 수행할 수 있음을 확인한다. 이진 CNN 알고리즘은 컴퓨팅 파워가 약한 시스템에서도 딥러닝을 구현할 수 있는 알고리즘으로 스마트 폰, 지능형 CCTV, IoT 시스템, 자율주행 자동차 등의 임베디드 시스템에서 다양하게 적용될 수 있는 시스템이다.
SURF(Speeded Up Robust Features)는 다양한 상태 변화에 강인한 기술자 추출 방법으로 객체 인식과 같은 분야에서 유용하게 사용되는 알고리즘이다. 이 알고리즘은 대표적인 특징점 추출 알고리즘인 SIFT(Scale Invariant Feature Transform)와 비슷한 성능을 보이면서도 수행 시간이 훨씬 빠르다는 장점이 있다. 하지만 이러한 기술자들은 회전 불변한 특징 보장을 위해서, 추출한 특징점 간의 위치 정보를 고려하지 않는다. 또한, 원본 영상을 흑백 영상으로 변환하여 사용하기 때문에, 원본 이미지의 색상 정보도 이용하지 않는다. 본 논문에서는 특징점들 간의 상대적인 위치 정보 및 색상 정보를 이용하여 SURF 기술자의 정합 성능을 개선하는 방안을 제안한다. 상대적인 위치 정보는 특징점들의 중심을 연결하는 선분과 특징점 중심에서부터 생성되는 orientation 선분 사이의 각을 기반으로 한다. 색상 정보의 경우 각 특징점이 포함하고 있는 영역에 대해 color histogram을 생성하여 사용한다. 실험을 통하여 제안된 기법의 성능 개선을 보인다.
수치표면모형은 어떤 지역 표면의 고도를 표현하는 수치모형이다 이것은 항공사진으로부터 정사영상생성을 생성하는데 필수적인 것이며, 최근에는 항공사진에서 건물과 같은 인공구조물의 추출에도 자주 응용되고 있다 영상정합기술을 사용하면 수치표면모형을 자동적으로 생성할 수 있다. 이 연구에서는 건물지역에 대하여 수치표면모형을 자동적으로 생성하는데 적용할 수 있는 영상정합 방법을 제안하였다. 제안된 정합방법은 중복촬영된 항공사진상에서 공액점과 공액선을 찾아낸다. 공액점을 탐지하는데 있어서는 화소 값간의 상관계수뿐만 아니라 공액점쌍일가능성이 있는 것들간의 위치관계도 비교된다. 공액선 탐지에 있어서는 선 측면의 컬러 속성값, 선의 모양, 인접하는 점 및 선들간의 위치관계, 그리고 선들간의 연결관계가 비교된다. 제안된 정합방법은 건물지역을 포함하는 대상지역의 수치표면모형 자동생성에 유용할 것으로 생각된다.
홍채진단은 홍채의 패턴, 색, 기타 다른 특징들을 조사하여 환자의 병을 진단하는 대체의학이다. 그러나 기존의 연구는 흑백 홍채영상을 이용하여 홍채 내의 특정 패턴을 검출하는 알고리즘 연구로 홍채의 칼라 정보로부터 건강상태를 체크하는 진단시스템으로 사용하기에는 부족하다. 본 논문에서는 칼라 홍채영상과 의료정보 데이터베이스를 이용하는 홍채진단시스템을 개발하였다. 개발한 시스템은 홍채카메라는 갖는 입력모듈, 홍채병소징후 검출 모듈, 의료정보 데이터베이스, 출력 모듈 등 4가지 모듈로 되어있다. 칼라 홍채영상으로부터 7가지 주요 홍채병소징후를 추출하고 검진의 정확도를 위해 병소 수동 편집 기능을 제공한다. 병소를 분석하는 단계에서는 홍채학에 기반한 의료정보와 개인 이력 관리 모듈을 이용한다. 제안한 시스템은 기존 시스템의 비해 다양한 기능이 추가되어 홍채진단 시스템으로 활용 가능하다.
신 차량 번호판 차량이 꾸준히 증가함에 따라, 교통위반 단속, 무인 주차 관리 시스템, 범죄 및 도난 차량 검거를 위한 신 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 지능형 신 자동차 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 신 차량 영상을 그레이 레벨로 변환한 후에 블록 이진화한다. 블록 이진화된차량 영상을 대상으로 차량의 형태학적 특징을 적용하여 잡음을 제거한 후, 번호판 영역을 추출한다. 추출된 번호판 영역에 대해 Grassfire 알고리즘을 적용하여 개별 코드를 추출한다. 차량 번호판을 인식하기 위하여 추출된 개별 코드를 퍼지 ART 알고리즘을 적용하여 학습 및 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 100장의 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
The orientalism in fashion is believed to develop from the eclectic notion of oriental and occidental fashion. By studying on Gabrielle Chanel's clothing that is usually used by neutral colors and on Yohji Yamamoto's clothing that characterizes clothes in neutral colors, the purpose of this study is to seek ways for remaking Korean traditional clothing into a new modern one to gain a world reputation in terms of clothes. Therefore the study is for exploring the characteristics on the factors of fashion design such as color, line and textile materials with works of Gabrielle Chanel, a famous designer in Western world who has made a black color a popular one for people and works of Yohji Yamamoto, an well-known fashion designer of the East using neutral colors. This study analyzed, from the 2004 S/S to the 2006 F/W, the collection of works published in style.com through the works of Gabrielle Chanel, Yohji Yamamoto, and through the analysis of the visual target. A total of 527 images are used in this paper. Elements of fashion design analysis are lines, colors, and materials. The study reached the conclusion as follows after analyzing the characteristics on clothing with neutral colors of Gabrielle Chanel and Yohji Yamamoto. In case of aesthetic characteristics on the design of Gabrielle Channel, it has expression of feminist, sensual, modern and luxury. It is considered that Gabrielle Channel has a luxury image using a neutral color. Also using simple sleeveless in black and tweed structure, the garments have mixed with neutral colors. Fashion design characteristics on the design of Yohji Yamamoto classified into sensual, modern, ascetic expression. Therefore the design has a simple expression of using a black color. Yohji Yamamoto is a designer who pursues unstructured design by using various neutral colors such as black, gray and white based on the oriental sentiment.
본 논문에서는 25㎒대역에서 피크값 검출, time average 및 depth profile 알고리즘을 초음파 현미경에 적용하였고 각 알고리즘의 성능을 비교, 분석하였다. time average 알고리즘에서는 동전 한 지점에서 반사된 펄스파가 시간영역에서 디지털 값으로 변환되고 변환된 512개 데이터의 평균값이 계산된다. time average영상은 샘플의 스캐닝영역에서 획득된 N×N 매트릭스 평균값들이 그레이레벨에 의해 획득된다. 시간영역에서 smoothing효과를 갖는 이 기술은 산란현상을 많이 일으키는 영역의 초음파영상을 향상시킬 수 있다. depth profile 기술에서는 기준신호와 검출신호의 시간차가 최소 2ns의 분해능을 갖고 검출되므로 스캐닝 영역의 3차원적인 실제 형태가 상대적인 크기로 검출된다. 이러한 실험을 통하여 피크값 검출, time average 및 depth profile 알고리즘이 분석되었고 각 알고리즘의 잇점이 제시되었다.
본 논문에서는 새로운 사이드 매치 왜곡 함수를 이용한 적응 FSVQ(Finite State Vector Quantization)방법을 제안한다. 기존의 사이드 매치 왜곡 함수는 블럭 경계 사이의 휘도 천이를 부드럽게 해주고 블럭간의 상관 관계가 높은 평탄 영역에서는 적절한 상태 부호책을 작성할 수 있으나 블럭간의 상관 관계가 낮은 윤곽선 영역에서는 적절한 상태 부호책을 작성할 수 없다. 본 논문에서 제안한 왜곡 함수는 기존의 사이드 매치 왜곡 함수에 영상의 특징을 나타내줄 수 있는 분산 값을 가중치로 사용하여 기존의 사이드 매치 왜곡 함수보다 적절한 상태 부호책을 작성할 수 있도록 한다. 또한 상태를 잘못 예측하였을 경우 이를 정정한 후, 처리하게 함으로써 만족할만한 영상의 질을 얻을 수 있도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.