• Title/Summary/Keyword: Gravity wave

Search Result 209, Processing Time 0.021 seconds

A Study on Wave Observation System with GPS Arrayed Buoys by using MUSIC Method

  • Yoo, Yun-Ja;Song, Chae-Uk;Kouguchi, Nobuyoshi;Fujii, Hidenobu
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.677-682
    • /
    • 2003
  • The long-period gravity wave, the wave period from some ten seconds to some minutes, induces not only the big sway of a ship moored and berthed in the harbor due to the horizontal long-distance motion of a water but also strong exfoliated flow and vortices near the harbor entrance. They muse serious problems on the safety navigation of vessels entering and leaving the harbor, but this gravity wave has not been searched sufficiently yet. Then it is quite important to reveal the characteristics of this long-period gravity wave ana to solve various problems induced by this wave. The long-period gravity wave measurement system with arrayed buoys installed the kinematic GPS was already proposed, which provides the precise propagating direction of the long-period gravity wave. In this paper, the observation results of the wave measurement system are shown by the MUSIC method And the propagating wave direction was estimated precisely enough in comparison with other results used other method.

All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

  • Wu Qian;Killeen Timothy L.;Solomon Stanley C.;McEwen Donald J.;Guo, Weiji
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.237-247
    • /
    • 2002
  • We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute $(75^{\circ}N)$ and a joint observation of 10-hour wave with Eureka $(80^{\circ}N)$. All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSW predictions. The FPls at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new fractures about the mesospheric gravity wave, tidal wave, and other oscillations.

Analysis on the Reduction Effects of the Gravity Waves and Infra-Gravity Waves of Detached Submerged Breakwater by Field Monitoring (현장관측을 통한 이안소파잠제의 중력파 및 중력외파 저감효과 검토)

  • Jeong, Weon-Mu;Back, Jong-Dai;Choi, Hyukjin;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.51-60
    • /
    • 2018
  • This study was conducted to observe the effects of gravity and infra-gravity wave of detached submerged breakwater in the coast of Yeongnang-dong, Sokcho, as analyzing continuous wave data by performing field observations on the front area (W0) and rear area (W1, W2). Wave transmission coefficient ($K_t$) of submerged breakwater was analyzed in two parts, short-period wave (gravity wave) and infra-gravity wave. The wave energy reduction effect was analyzed and compared with the value of the design. In case of above wave height 2.0 m at the front area (W0) of the submerged breakwater, the short-period wave height at point W1 is reduced by about 65% and the short-period wave height at point W2 is reduced by about 59%. The depth of crest of submerged breakwater conducted in a sea area differs from the design, and the wave energy reduction effect is analyzed to be smaller than the design plan. The infra-gravity waves were amplified to 2.11 and 1.71 at the W1 and W2 points, respectively, and the wave height at W2 point was smaller than that at W1 point.

The Analysis of Dynamic Behavior of Concrete Gravity Dam (중력식콘크리트댐의 동적거동분석)

  • 임정열;이종욱;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.155-162
    • /
    • 2001
  • In this study, it was performed that the seismic response analysis using long period earthquake wave and short period earthquake wave on dynamic behavior of concrete gravity dam. The results showed that if the same magnitude earthquake waves acted on concrete dam, the maximum displacement and stress at dam crest of long period wave(0funato wave) were about 30 % larger than those of short period wave(Hachinohe wave). And the response acceleration of dam crest was amplified about 5 times in long period earthquake wave and about 3 times in short period earthquake wave.

  • PDF

Physical Properties of Rocks according to Heating Treatment (열충격 시험에 의한 암석의 물성변화)

  • Kim, Jae-Hwan;Lee, Myeong-Seong;Lee, Jae-Man;Lee, Mi-Hye;Park, Sung-Mi
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.31-42
    • /
    • 2010
  • This study were performed thermal shock test for four kind of different rocks (Iksan granite, Namsan granite, Jeongseon marble, Yeongyang sandstone), and according to heating temperature($400^{\circ}C$, $600^{\circ}C$) on samples were investigated physical properties such as specify gravity, porosity, p-wave velocity. As a result, the tendency was appeared that porosity increased, and specific gravity and p-wave velocity decreased at a more higher temperature. But, the situation of change appeared characteristic according to temperature and rock types. In the case of Yeongyang sandstone, it appeared in especially porosity increasing at $400^{\circ}C$. The specific gravity was little change in the all the rock at $400^{\circ}C$ but the decreased at $600^{\circ}C$. Therefore the specific gravity in the temperature range is due to the relatively small impact on the change is expected. Porosity of the granite at $400^{\circ}C$ changes little. but marble in the rate of change is large. Conversely, the sandstone porosity decreased. At $600^{\circ}C$ increased porosity in all of rocks. particularly sandstone the smallest increase in porosity. Experiments showed that p-wave velocity measured through dry rocks was sensitive to quantify the thermal damage. The p-wave velocity of all rocks decreased with increasing temperature. In the relation between porosity and p-wave velocity, p-wave velocity decreased with increasing porosity. On the other hand, in case of Yeongyang sandstone p-wave velocity decreased with decreasing porosity. thus, development of microcracks more affects p-wave velocity than porosity. In this study, damage intensity was well explained with porosity and p-wave velocity values depending on temperature increase.

  • PDF

Statistical Comparison of Gravity Wave Characteristics Obtained from Airglow All-Sky Observation at Mt. Bohyun, Korea and Shigaraki, Japan

  • Yang, Tae-Yong;Kwak, Young-Sil;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Previously, all-sky airglow images observed at Shigaraki ($34.9^{\circ}N$, $136.1^{\circ}E$), Japan, during 2004 and 2005 were analyzed in relation to those observed at Mt. Bohyun ($36.2^{\circ}N$, $128.9^{\circ}E$) for a comparison of their gravity wave characteristics (Kim et al. 2010). By applying the same selection criteria of waves and cloud coverages as in the case of Mt. Bohyun all-sky images, we derived apparent wavelengths, periods, phase velocities, and monthly occurrence rates of gravity waves at Shigaraki in this study. The distributions of wavelengths, periods, and speeds derived for Shigaraki were found to be roughly similar to those for Mt. Bohyun. However, the overall occurrence rates of gravity waves at Shigaraki were 36% and 34% for OI 557.7 nm and OH Meinel band airglow layers, respectively, which were significantly higher than those at Mt. Bohyun. The monthly occurrence rates did not show minima near equinox months, unlike those for Mt. Bohyun. Furthermore, the seasonal preferential directions that were clearly apparent for Mt. Bohyun were not seen in the wave propagation trends for Shigaraki. These differences between the two sites imply different origins of the gravity waves near the Korean peninsula and the Japanese islands. The gravity waves over the Japanese islands may originate from sources at various altitudes; therefore, wind filtering may not be effective in causing any seasonal preferential directions in the waves in the airglow layers. Our analysis of the Shigaraki data supports recent theoretical studies, according to which gravity waves can be generated from in situ sources, such as mesosphere wind shear or secondary wave formation, in the mesosphere.

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

The Study on the Wave Pressure of the Tsunami Acting on the Permeable Structure (투과성구조물에 작용하는 지진해일파압에 관한 연구)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2011
  • In this study, wave pressure of short-period gravity waves and tsunami acting on the upright section of the horizontal-slit type caisson placed on the impermeable or permeable seabed, which is a well-known permeable breakwater with a good wave controlling ability, are investigated via numerical simulations. Further, the permeable seabed was modeled as the porous media with porosity of 0.4. Using the numerical results, the effects of the seabed conditions on the wave pressure on the front wall and inside wall of the chamber have been studied. In the numerical simulations, short-period gravity waves and tsunami(solitary wave or bore) with the same amplitude to the gravity wave are considered. A numerical wave tank is used, which is able to consider a gas-liquid two-phase flow in the same calculation zone. Numerical results show that the wave pressure of the tsunami was 3~5 times higher than the short-period gravity waves acting on the front wall and it was 2~4 times higher than the short-period gravity waves acting on the inner wall.

PROPAGATION OF SURFACE WAVES ON IRREGULAR BED TOPOGRAPHY

  • WARKE A. S.;DAS S. K.;DEBNATH L.
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.197-208
    • /
    • 2006
  • This paper deals with the exact solution of surface gravity waves in an ocean with irregular bed topography. In order to obtain water surface elevation and run-up of infra-gravity waves when the bed is either wavy or exponential, closed form solutions are obtained. Numerical computations indicate that when solitary wave or sinusoidal wave conditions are applied at the boundary, water surface elevation attains near Gaussian profile.

Effects of vertical resolution on a parameterization of convective gravity waves (대류 중력파 항력 모수화에 미치는 연직 해상도의 영향)

  • Choi, Hyun-Joo;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.121-136
    • /
    • 2008
  • We investigate effects of vertical resolution on a parameterization of convective gravity waves (SGWDC) developed in Song and Chun (2005) through offline and online tests of the SGWDC parameterization. For offline tests, numerical simulations of the SGWDC parameterization with different number of vertical levels (L66, L117, L168, L219 and L270) from the surface to 120 km are performed for two different saturation methods. It is found that the wave momentum forcing is overestimated or underestimated in the SGWDC parameterization with different vertical resolutions, depending on the saturation methods. The increase of the vertical resolution modifies the magnitude and distribution of the wave momentum forcing in the parameterization, and this is mainly due to modification of wave saturation levels in the wave saturation processes. However the wave momentum forcing converges in the parameterizations with vertical resolutions higher than L168. For online test, the SGWDC parameterizations with vertical resolutions of L66 and L164 are implemented into a climate model with vertical resolution of L66, separately. In the L164 experiment, the wave momentum forcing decreases in the mid-latitude winter mesosphere in July and zonal mean flows are more realistically reproduced in the tropical regions compared with those in the L66 experiment. These results demonstrate that the wave momentum forcing calculated in the parameterization is sensitive to the vertical resolution, and the implementation of the SGWDC parameterization into high resolution models is required for realistic representation of the gravity wave momentum forcing in large-scale numerical models.