Browse > Article
http://dx.doi.org/10.9765/KSCOE.2011.23.1.079

The Study on the Wave Pressure of the Tsunami Acting on the Permeable Structure  

Lee, Kwang-Ho (Departments of Civil Engineering, School of Engineering, Nagoya University)
Choi, Hyun-Seok (Department of Civil Engineering, Korea Maritime University)
Kim, Chang-Hoon (Department of Civil Engineering, Korea Maritime University)
Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
Cho, Sung (Gyeong-In waterway business division, Korea water resources corporation)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.23, no.1, 2011 , pp. 79-92 More about this Journal
Abstract
In this study, wave pressure of short-period gravity waves and tsunami acting on the upright section of the horizontal-slit type caisson placed on the impermeable or permeable seabed, which is a well-known permeable breakwater with a good wave controlling ability, are investigated via numerical simulations. Further, the permeable seabed was modeled as the porous media with porosity of 0.4. Using the numerical results, the effects of the seabed conditions on the wave pressure on the front wall and inside wall of the chamber have been studied. In the numerical simulations, short-period gravity waves and tsunami(solitary wave or bore) with the same amplitude to the gravity wave are considered. A numerical wave tank is used, which is able to consider a gas-liquid two-phase flow in the same calculation zone. Numerical results show that the wave pressure of the tsunami was 3~5 times higher than the short-period gravity waves acting on the front wall and it was 2~4 times higher than the short-period gravity waves acting on the inner wall.
Keywords
numerical wave flume; orizontal-slit type caisson; two-phase flows; wave pressure; tsunami(solitary wave or bore); short-period gravity waves;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lesieur, M., Metais, O. and Comte, P. (2005). Large-eddy simulations of turbulence, Cambridge Univ. Press, New York, N.Y.
2 Miyata, H. and Nishimura, S. (1985). Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration., J. Comput. Phys., 60, 391-436.   DOI   ScienceOn
3 Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field., Fluid Dyna. Res., 8, 231-251.   DOI   ScienceOn
4 Ramsden, J. D. (1993). Tsunami : Forces on a vertical wall caused by long waves, bores, and surges on a dry bed, Ph.D. Thesis, California Institute of Technology, California, USA.
5 Rudman, J. D. (1997). Volume-tracking methods for interfacial flow calculations., Int. J. Numer. Methods in Fluids, 24, 671-691.   DOI   ScienceOn
6 Smagorinsky, J. (1963). General circulation experiments with the primitive equations., Mon, Weath. Rev., 91(3), 99-164.   DOI
7 Tome, M. F. and McKee, S. (1994). GENSMAC : A computational marker and cell method for free-surface flows in general domains, J. of Comput. Phys., 110, 171-186.   DOI   ScienceOn
8 谷本勝利, 鶴谷一, 中野晋 (1984). 1983年日本海中部地震津波に おける津波力と埋立護岸の被災原因の檢討, 第31回海岸工學講 演會論文集, 257-261.
9 Akiyama, M. and Aritomi, M. (2002). Advanced numerical analysis of two-phase flow dynamics-multi-dimensional flow analysis, Corona Publishing Co., LTD. Tokyo, JAPAN.
10 Amsden, A. A. and Harlow, F. H. (1970). The SMAC method: a numerical technique for calculating incompressible fluid flow., Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M..
11 Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method., Coastal Engrg., 11, 93-113.   DOI   ScienceOn
12 Hirt, C. W and Nichols, B. D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries., J. of Comput. Phys., 287, 299-316.
13 Fenton. J. (1972). A ninth-order solution for the solitary wave: Part Fig. 15. Time evolution of the computed water level fluetuation on the impermeable seabed due to the bore. 2., J. of Fluid Mech., 53, 257-271.   DOI
14 Grimshaw, R. (1971). The solitary wave in water of variable depth: Part 2., J. of Fluid Mech., 46, 611-622.   DOI
15 Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface., J. of Kansai Soc. Nav. Archit. Japan, No. 217, 1-11.
16 Kunugi, T. (2000). MARS for multiphase calculation., CFD J., 9(1), IX-563.
17 김도삼, 김지민, 이광호, 손병규 (2007). 일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석, 한국해양공학회지, 21(6), 64-71.
18 김도삼, 이광호, 허동수, 김정수 (2001). VOF법에 기초한 불투과잠제 주변파동장의 수치해석, 대한토목학회논문집, 대한토목학회, 21(5-B), 551-560.
19 김창훈 (2007). 파랑작용하 해안.해양구조물의 주변 파동장 및 지반의 동적응답해석에 관한 연구, 박사학위논문, 한국해양대학교.
20 이광호, 이상기, 신동훈, 김도삼 (2008). 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석, 한국해안.해양공학회논문집, 20(1), 1-13.
21 이광호, 최현석, 백동진, 김도삼 (2010). 슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석, 한국해안.해양공학회논문집, 22(6), 366-378.