• Title/Summary/Keyword: Gravity theory

Search Result 170, Processing Time 0.022 seconds

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

On the Geometry of Charged Rotating Black Holes

  • Yun, Jong Gug
    • Journal for History of Mathematics
    • /
    • v.35 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we review some aspects of geometry for charged rotating black holes which are formed from the gravitational collapse of a massive spinning star with electric charge. We also introduce the computation of entropy for black holes from loop quantum gravity which is a quantum theory of gravity based on Einstein's theory of general relativity.

WORMHOLES IN SCALAR-TENSOR THEORIES OF GRAVITY

  • RIAZI N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.283-284
    • /
    • 1996
  • Wormhole solutions of general theory of relativity are known to violate energy conditions. We have considered the possibility of having wormhole solutions in Brans-Dicke theory which is the prototype of scalar-tensor theories of gravity.

  • PDF

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

Analysis of Consolidation Behavior for Dredged Clay with Horizontal Drains (수평배수재가 설치된 준설매립 점토의 압밀 거동 해석)

  • 김수삼;장연수;박정순;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.641-648
    • /
    • 2000
  • The horizontal drain method by installing drains horizontally in the ground is often used to expedite the dispersion of pore water and to increase the strength of dredged soft clay under the action of gravity or vacuum. In this study a numerical analysis method is developed to predict the consolidation process of soft ground with horizontal drains. One-dimensional self-weight consolidation theory is extended tn three-dimensions] theory with appropriate boundary conditions of horizontal drains. In the condition of pore water drainage by gravity, the behavior of the dredged clay with horizontal drains is compared with that of the clay without drains. The influence of design factors of drains on consolidation process is also analyzed.

  • PDF

Simulation of Gravity Feed Oil for Aeroplane

  • Lu, Yaguo;Huang, Shengqin;Liu, Zhenxia
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.732-736
    • /
    • 2008
  • The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.

  • PDF

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

Thickening of Sludge from DAF process by Flotation; Application of Solid Flux Theory and Effective Factors (DAF 슬러지의 부상식 농축; 고형물 플럭스법 적용과 영향인자)

  • Park, Sangcheol;Han, Mooyoung;Dockko, Seok;Kwon, Soonbuhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.617-626
    • /
    • 2006
  • Compared with the sludge from gravity sedimentation, it is difficult for operations to settle the sludge occurred from dissolved-air-flotation (DAF). Even though there are some problems in treating DAF sludge with conventional gravity thickeners, those has been used until now. In this study, Solid Flux theory for gravity thickening was applied to the Solid Flux of DAF sludge through flotation in order to develop new methodology for treatment of DAF sludge. Also, characteristics of DAF sludge were investigated. From the experiment results, it was revealed that the higher the polymer dosage, at fixed the solid concentration, the greater the rising velocity becomes. When we applied solid flux theory, the relationship, which is similar to that of gravity thickening, has been achieved. Also, we could find the proper polymer dosage from the rising velocity is about 50 mg/L. Consequently, the limiting solid flux can be derived from the relationship between the total solid flux and the withdrawal velocity of DAF sludge. Furthermore, the factors, such as solid concentrations, bubble volume, pH, zeta potential, and temperature, have effects on the flotation and sedimentation for DAF sludge treatment.