• Title/Summary/Keyword: Gravity flow

Search Result 388, Processing Time 0.022 seconds

The Prediction of Stratified Flow Pattern in a Variable Tube Inclinations and Gravity Conditions (다양한 배관 경사각도 및 중력조건에서의 층상류 유동양식 예측)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The stratified flow can be seen in the oil and gas pipelines as well as pipelines related to ship's fluid machineries. Numerous theories and correlations have also been proposed in the past for the prediction of stratified flow in horizontal or slightly inclined pipe. The previous researches are mostly about the effects of physical properties, viscosity, phases densities and pipe geometries on the stratified flow. Very few study outcomes exist on the effect of gravity magnitude and large slop angle of pipe inclinations on the occurring condition of stratified flow. In this study, therefore, analytical procedures were conducted about the effect of both the change in the gravity magnitude and pipe inclinations on the stratified flow occurring conditions. From the analytical results, it was found that stratified flow occurred at the vertical upward inclination and at very low liquid phase flowrates in 0.17g and 0.33g conditions.

  • PDF

Numerical Analysis of Gravity Current Flow past Subsea Pipe above a Scour (세굴된 해저 파이프 주위 중력류의 유동 해석)

  • Jung, Jae Hwan;Yoon, Hyun Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.892-899
    • /
    • 2016
  • Gravity current flow past a subsea pipe above a scour based on computational fluid dynamics. For comparison, gravity current flow over pipe above a smooth bed also calculated, this configuration conventionally employed to consider the scour effect from an ideal approach. Interestingly, there different flow features and hydrodynamic forces between the scour and smooth bed cases. These results indicate that realistic conditionvery important investigatthe scour effect on gravity current flow around subsea pipe.

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

Control of the Casting Defects in the Gravity Tilt Pour Casting Process (경동식 중력주조법에 의한 주조결함 제어)

  • Yeom, Ki-Dong;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.262-270
    • /
    • 1998
  • Gravity tilt pour casting can effectively guarantee the reduction of various casting defects by controlling the rotation speed and the tilting angle of the mold during tilt pouring. The relationship between casting process parameters and the soundness of castings has been investigated in order to determine the optimum process variables in the gravity tilt pour casting process. In order to evaluate the effect of rotation speed on mold filling patterns, a video camera was employed to visualize the in-situ fluid flow behavior of the molten metal, and the relevant fluid velocity was also estimated. X-ray and mechanical tests were also performed to evaluate the effect of fluid velocity on casting quality. With the rotation speed lower than 0.5 r.p.m., which is nearly corresponding to the critical velocity of stability in the fluid flow, sound castings were obtained without having any casting defects. It can be concluded that the gravity tilt pour casting process is an effective process for manufacturing sound casting products with enhanced physical and mechanical properties.

  • PDF

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Study on Analysis of Gravity Currents by the Finite Difference Boltzmann Method using Two-dimensional Compressible fluid Model (차분격자볼츠만법의 압축성 유체모델을 도입한 중력류의 흐름현상에 관한 연구)

  • 손유식;김원철;강호근
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2002
  • In this research, the finite difference lattice Boltzmann method(FDLBM) is used to analyze gravity currents in the lock exchange configuration that occur in many natural and man-made situations. At a lock those are seen when a gate is suddenly opened, and, in the atmosphere, when the thunderstorm outflows make a cold front. At estuaries in the ocean, the phenomenon is found between fresh water from a river and salt water in the sea. Since such interesting phenomena were recognized, pioneers have challenged to make them clear by conducing both experiments and analysis. Most of them were about the currents of liquid or Boussinesq fluids, which are assumed as incompressible. Otherwise, the difference in density of two fluids is small. The finite difference lattice Boltzmann method has been a powerful tool to simulate the flow of compressible fluids. Also, numerical predictions using FDLBM to clarify the gravity currents of compressible fluids exhibit all features, but typically observed in experimental flows near the gravity current head, including the lobe-and-cleft structure at the leading edge.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

A Study on the Filling and Solidification Process During Gravity Casting Using Implicit VOF Method (암시적 VOF법을 이용한 중력주조에서의 충전 및 응고과정에 대한 연구)

  • Im, Ik-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.102-113
    • /
    • 2000
  • In this study, a three-dimensional gravity casting problem has been examined to investigate a coupled phenomenon of the filling and solidification process. This work simultaneously considers the two key phenomena of metal casting : the fluid flow during mold filling, and solidification process. The VOF method is used to analyze the free surface flow during filling and the equivalent specific heat method is employed to model the latent heat release during solidification. The time-implicit filling algorithm is applied to save the computational time for analyzing the mold filling process. The three-dimensional benchmark problem used in the MCWASP VII has been solved using both the implicit and explicit algorithm, and the present results are compared with the benchmark experimental results and the other numerical results.