• Title/Summary/Keyword: Gravitational effect

Search Result 151, Processing Time 0.026 seconds

EHT data processing and BH shadow imaging techniques

  • Cho, Ilje
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2019
  • Event Horizon Telescope (EHT) aims to resolve the innermost region to the super massive black hole (SMBH) with its extremely high angular resolution (~20-25 uas) and enhanced sensitivity (down to 1-10 mJy) in concert with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm wavelength. This has a great importance as the first observational probe of the black hole shadow which has been theoretically predicted as a ring-like emission affected by the general relativistic effect under a strong gravitational field of SMBH. During the 2017 April 5-11, four nights of EHT observing campaign were carried out towards its primary targets, M87 and $SgrA{\ast}$. To robustly ensure the data processing, independent pipelines for various radio data calibration softwares (e.g., AIPS, HOPS, CASA) have been developed and cross-compared each other. The EHT has also been developing newer interferometric imaging techniques (e.g., eht-imaging-library, SMILI, dynamical imaging), as well as using an established method (CLEAN). With these, the EHT has designed various strategies which will be adopted for convincing imaging results. In this talk, I review how the robustness of EHT data processing and imaging will be validated so that the results can be ensured against well known uncertainties or biases in the interferometric data calibration and imaging.

  • PDF

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.

Review on the Relative Sea-level Changes in the Yellow Sea during the Late Holocene (한반도 서해안의 후기 홀로세 해수면 변동 곡선에 대한 검토)

  • Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.463-471
    • /
    • 2018
  • In this paper, we review previous studies on the relative sea-level changes in the Yellow Sea during the Holocene to comprehensive understand the various research results. Currently, it is reported two theories : 1) the Holocene sea-level has never been higher than the present-day level; and 2) sea-level have reached highstand during mid-Holocene, followed by slow lowering to that of the present. The first theory yields a curve that is similar to a climate-change-related eustatic sea-level curve. However, in reality, most of the relative sea-level fluctuation resulted from land uplift or subsidence. The second theory yields a curve that is fairly coincident with a relative sea-level curve indicative of continental margins being located away from the ice sheets(i.e., far-field), and is considered as an effect of GIA(Glacio Isostatic Adjustment) and gravitational attraction. Based on detailed review of previous researches, we realized that they sourced the same papers, but obtained different results because they selectively chose and added the data. The data used to derive the second theory pertain to the northern Gunsan region, which is located within the western area of the Chugaryeong fault. Thus, we believe that the sea-level curve for the second theory is only representative of the area north of Gunsan, which is subject to GIA and tectonic deformation. Although the relative sea-level curve for the west coastal area is comparable to that for the far-field continental margin region, it is necessary to evaluate local tectonic activities as suggested by active seismicity in the west coastal area and the more than 400 faults currently existing in on the Korean Peninsula.

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.

Effect on Identification of Irradiated Wheat and Soybean by the Full-overlapped Gravitational Field Energy(FGFE) Treatment (중첩중력에너지가 방사선 조사된 밀과 대두의 판별특성에 미치는 영향)

  • Oh, Sang-Lyong;Ahn, Jae-Jun;Kwon, Joong-Ho;Kim, Hak-Je
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.294-301
    • /
    • 2011
  • The aim of this study was to investigate the changes in identification markers of irradiated foods after treatment of the full-overlapped gravitational field energy (FGFE). Wheat and soybean samples were irradiated at 0-5 kGy of Co-60 gamma energy, and analyzed for photostimulated and thermo luminescence characteristics (PSL and TL) and sprouting rate at 0 and 6th month after FGFE treatment. As a screening method for irradiated samples, PSL photon counts (PCs) for the non-irradiated samples appeared negative (<700 PCs), while irradiated samples gave positive (>5,000 PCs). But FGFE-treated irradiated samples appeared intermediate (700-5,000 PCs), showing decreased PCs during storage. The TL analysis on irradiated samples exhibited glow curve peaks in range of $150-200^{\circ}C$ and TL ratio ($TL_1/TL_2$) was also >0.1. Therefore, identification of irradiated samples was possible using thermoluminescence. But the glow curve range of FGFE-treated irradiated samples shifted from $150-200^{\circ}C$ to $180-230^{\circ}C$ and TL intensity was decreased 37-60% resulting from FGFE treatment. After 6 months of storage, all the samples showed a decrease in TL intensity, but identification was still possible. The sprouting rate of irradiated samples decreased by about 72%, whereas that of FGFE-treated irradiated samples showed by about 85%, as compared to non-irradiated samples. More detailed study is required to investigate sprouting phenomena for FGFE-treated samples.

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid (무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

A Study on the Effect of Trim on the Resistance in a Small Coastwise Passenger Boat (소형연안객선(小型沿岸客船)의 Trim변화(變化)가 저항(抵抗)에 미치는 영향(影響))

  • J.H.,Hwang;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-54
    • /
    • 1967
  • The authors considered the effects of trim in the small coastal passenger boat upon resistance in this paper. Any change of trim no matter how small, necessarily produces some effect upon resistance. The relations between the resistance coefficients and trim were investigated through the towing test of the Model $MCI-P_1-65$, Korean Standardized Ship, GT 70 tons passenger boat in the gravitational tank. The Lines of the Model are given in Fig. 1. Principal dimensions and other characteristics vary with the trim in general. Those values varied with the trim for $MCI-P_1-65$ are tabulated in table 1. The resistance was measured at five conditions such as even keel, 0.0273L, (original designed trim) 0.0473L, 0.0663L, 0.0873L trim by the stern, fixing the displacement corresponding to the designed load water line. Model was made of wood in length of 3.5 feet coated with varnish, and without appendages. As the artificial turbulent stimulator, the sand strip method was used. The results of model towing tests, correcting to water temperature of $70^{\circ}F$, were expanded to full scale using the Schoenherr's friction formula and surface roughness allowance coefficient of 0.0004. The authors point out, the following results. 1) Optimum trim which gives the minimum resistance exists for every speed at constant displacement and each comes to the same value. For $MCI-P_1-65$ optimum trim is 0.0673L trim by the stern(Fig.4-The cross curves of the resistancecoefficients). 2) At constant displacement, when LCB(longitudinal position of center of buoyancy) varies with the trim, there exists optimum value of LCB which gives minimum resistance for every speed and each comes to the same value. For $MCI-P_1-65$ optimum position of LCB is 8%L aft from midship section (Fig.6).

  • PDF

Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes (마이크로채널관 내 2상 유량분배, 상분리 및 압력강하)

  • Cho, Hong-Ki;Cho, Geum-Nam;Yoon, Baek;Kim, Young-Saeng;Kim, Jung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.

Surface-Tension Effects on the Flow Caused by a Two-Dimensional Pulsating Source Moving with a Constant Speed beneath the Free Surface (전진하며 동요하는 2차원 특이점에 의하여 발생되는 자유표면파에 미치는 표면장력의 영향)

  • Hang-S.,Choi;Jae-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • This paper deals with the flow caused by a two-dimensional pulsating source, which moves with a constant horizontal speed beneath the free surface. The analysis is based on lincar potential theory including surface tension effects. In the case of subcritical reduced frequencies $\tau<1/4(\tau=U_{\omega}/g$, U=constant speed, $\omega$=circular frequency, g=gravitational acceleration), six wave components arc found. Two of them are largely affected by surface tension, which propagate ahead of the source in the direction of and opposite to the steady translation, respectively. The rest are almost identical with those found by Haskind(1954), i.e. for which the surface tension effect is negligible. For low oscillation frequencies, the resonant frequency still exists at $\tau$ only slightly greater than 1/4. For oscillation frequencies greater than $\nu(={\omega}^2/g)>20$, the surface tension effect is so significant that it disperses generated waves and consequently the singular phenomenon is removed. However, in addition to the gravity breaking, capillary breakings occur when the translation speed coincides with the minimum capillary celerity.

  • PDF