Browse > Article
http://dx.doi.org/10.3795/KSME-B.2004.28.6.713

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid  

Namkoong, Kak (서울대학교 대학원 기계항공공학부)
Choi, Hyoung-Gwon (서울산업대학교 기계공학)
Yoo, Jung-Yul (서울대학교 기계항공공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.28, no.6, 2004 , pp. 713-725 More about this Journal
Abstract
The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.
Keywords
Freely Falling Circular Cylinder; Combined Formulation; Vortex Shedding; St-Re Relationship; Thought Experiment; Transverse Motion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Billah, K. Y. and Scanlan, R. H., 1991, 'Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,' Am. J. Phys. Vol. 59, pp. 118-124   DOI
2 Strouhal, V., 1878, 'Uber Eine Besondere Art Der Tonerregung,' Annalen der Physik und Chemie (Liepzig), Neue Folge Bd.5, Heft 10, pp. 216-251   DOI
3 Williamson, C. H. K., 1996, 'Vortex Dynamics in the Cylinder Wake,' Ann. Rev. Fluid Mech Vol. 28, pp. 477-539   DOI   ScienceOn
4 Glowinski, R. , Pan T. W., Hesla T. I., Joseph, D. D. and Periaux, J., 2000, 'A Distributed Lagrange Multiplier! Fictitious Domain Method for the Simulation of Flow Around Moving Rigid Bodies: Application to Particulate Flow,' Comput. Methods Appl. Mech. Engrg. Vol. 184, pp. 241-267   DOI   ScienceOn
5 Dowell, E. H. and Hall, K. C., 2001, 'Modelling of Fluid-Structure Interaction,' Ann. Rev. Fluid Mech. Vol. 33, pp. 445-490   DOI   ScienceOn
6 Jayaweera, K. O. L. F., Mason, B. J. and Slack, G W., 1964, 'The Behaviour of Clusters of Spheres Falling in a Viscous Fluid: Part 1. Experiment,' J. Fluid Mech. Vol. 20, pp. 121-128   DOI
7 Fortes, A. F., Joseph, D. D. and Lundgren, T. S., 1987, 'Nonlinear Mechanics of Fluidization of Beds of Spherical Particles,' J. Fluid Mech. Vol. 177, pp. 467-483   DOI   ScienceOn
8 Johnson, A. A. and Tezduyar, T. E., 1996, 'Simulation of Multiple Spheres Falling in a Liquid-Filled Tube,' Comput. Methods Appl. Mech. Engrg. Vol. 134, pp. 351-373   DOI   ScienceOn
9 Zovatto, L. and Pedrizzetti, G., 2001, 'Flow About a Circular Cylinder Between Parallel Walls,' J. Fluid Mech. Vol. 440, 1-25   DOI   ScienceOn
10 Hu, H. H., Joseph, D. D. and Crochet, M. J., 1992, 'Direct Simulation of Fluid Particle Motions,' Theoret. Comput. Fluid Dynam. Vol. 3, pp. 285-306   DOI
11 Lei, C., Cheng, L. and Kavanagh, K., 1999, 'Reexamination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder,' J Wind Eng. Ind. Aerodyn. Vol. 80, pp. 263-286   DOI   ScienceOn
12 Feng, J., Hu, H. H. and Joseph, D. D., 1994, 'Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid: Part 1. Sedimentation,' J Fluid Mech. Vol. 261, pp. 95-134   DOI   ScienceOn
13 Choi, H. G, 2000, 'Splitting Method for the Combined Formulation of the Fluid-Particle Problem,' Comput. Methods Appl. Mech. Engrg. Vol. 190, pp. 1367-1378   DOI   ScienceOn
14 Chen, J. H., Pritchard, W. G. and Tavener, S. J., 1995, 'Bifurcation for Flow Past a Cylinder Between Parallel Planes,' J. Fluid Mech. Vol. 284, pp. 23-41   DOI   ScienceOn
15 Hu, H. H., Patankar, N. A. and Zhu, M. Y., 2001, 'Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique,' J Comp. Phys. Vol. 169, pp. 427-462   DOI   ScienceOn
16 Nithiarasu, P. and Zienkiewicz, O. C., 2000, 'Adaptive Mesh Generation for Fluid Mechanics Problems,' Int. J. Numer. Meth. Engng. Vol. 47, pp. 629-662   DOI   ScienceOn
17 Kak Namkoong, 2002, 'Numerical Analyses of Dynamic Fluid-Structure Interaction About a Freely Falling Cylinder and a Bernoulli-Euler Beam,' Ph. D. Thesis, School of Mechanical and Aerospace Engineering, Seoul National University
18 Nam, Y S., Choi, H. G and Yoo, J. Y, 2002, 'AILU Preconditioning for the Finite Element Formulation of the Incompressible Navier-Stokes Equations,' Comput. Methods Appl. Mech. Engrg. Vol. 191, pp. 4323-4339   DOI   ScienceOn
19 Hesla, T. I., 1991, 'Combined Formulation of Fluid-Particle Problem' (unpublished note)
20 Saad, Y., 1996, Iterative Methods for Sparse Linear Systems, Boston: PWS Publishing Company
21 Williamson, C. H. K. and Brown, G L., 1998, 'A Series in $1/\;\sqrt{Re}$ to Represent the Strouhal-Reynolds Number Relationship of the Cylinder Wake,' J. Fluids Struct. Vol. 12, pp. 1073-1085   DOI   ScienceOn
22 Henderson, R., 1997, 'Nonlinear Dynamics and Pattern Formation in Turbulent Wake Transition,' J. Fluid Mech. Vol. 352, pp. 65-112   DOI   ScienceOn
23 Kiyoung Kwon and Haecheon Choi, 1996, 'Active and Passive Controls of Laminar Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers,' Report No. TFC-MS001, Department of Mechanical Engineer-ing , Seoul National University
24 Choi, H. G. and Joseph, D. D., 2001, 'Fluidization by Lift of 300 Circular Particles in Plane Poiseuille Flow by Direct Numerical Simulation,' J. Fluid Mech. Vol. 438, pp. 101-128   DOI   ScienceOn
25 Fey, U., Konig, M. and Eckelmann, H., 1998, 'A New Strouhal-Reynolds-Number Relationship for the Circular Cylinder in the Range $47<\sqrt{Re}<2{\times}10^5$,' Phys. Fluids Vol. 10, pp. 1547-1549   DOI   ScienceOn
26 Patankar, N. A., Huang, P. Y., Ko, T. and Joseph, D. D., 2001, 'Lift-off of a Single Particle in Newtonian and Viscoelastic Fluids by Direct Numerical Simulation,' J. Fluid Mech. Vol. 438, pp. 67-100   DOI   ScienceOn
27 Hughes, T. G. and Taylor, C., 1980, Finite Element Programming of the Navier-Stokes Equations, Swansea: Pineridge Press
28 Park, J., Kwon, K. and Choi, H, 1998, 'Numerical Solution of Flow Past a Circular Cylinder at Reynolds Numbers up to 160,' KSME Int. J. Vol. 12, pp. 1200-1205   DOI
29 Braza, M., Chassaing, P. and Ha Minh, H., 1986, 'Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder,' J. Fluid Mech. Vol. 165, pp. 79-130   DOI   ScienceOn