• Title/Summary/Keyword: Grating interferometer

Search Result 67, Processing Time 0.02 seconds

Single-longitudinal-mode unidirectional fiber laser using fiber Bragg grating (광섬유 브래그 격자를 이용한 단일 종모드 단방향 광섬유 레이저)

  • 이정찬;전영민;김명욱;김봉규;이상배;김상국;최상삼;이상선
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.233-236
    • /
    • 1999
  • We have constructed a narrow-linewidth single-longitudinal-mode unidirectional $Er^{3+}$ -doped fiber laser using a fiber Bragg grating incorporated by a three port optical circulator with a compact configuration. Using a conventional delayed self-heterodyne detection technique with Mach-Zehnder interferometer a linewidth of 5 kHz was measured. In a single-longitudinal-mode operation, output power of up to 2.7 mW at 1548 nm were obtained for a launched pump power of 43 mW at 980 nm.

  • PDF

Fiber Bragg grating sensor using a Mach-Zehnder interferometer and EDFA for EDFA for simultaneous measurement of strain and temperature. (마하젠더 간섭계와 EDFA를 이용한 온도와 스트레인을 동시에 측정하는 광섬유 브래그 격자 센서)

  • 최민호;김부균;정재훈;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.371-375
    • /
    • 2001
  • We have implemented a sensor head which consists of erbium doped fiber pumped by 1480 nm LD and single fiber Bragg grating for simultaneous measurement of strain and temperature. The measurement precision and speed are improved by using Mach-Zehnder interferometer instead of optical spectrum analyzer (OSA) as a demodulator. The measurement precision of temperature measured by the amplitude variation of output signal is 0.05$^{\circ}C$ and that of strain measured by the phase variation of output signal is 0.1$\mu$strain. The measurement precision of temperature and strain are improved nearly 140 times and 700 times, respectively, compared to those using an OSA with wavelength resolution of 0.97 nm as d demodulator.

  • PDF

Polarimetric Fiber Pressure Sensor Incorporating Polarization-Diversity-Loop-Based Sagnac Interferometer (편광상이 고리 구조 기반 사냑 간섭계를 이용한 편광 간섭형 광섬유 압력 센서)

  • Ryu, Uh-Chan;Choi, Sung Wook;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we demonstrated a polarimetric fiber pressure sensor using a polarization-diversity-loop-based Sagnac interferometer(PDLSI) composed of polarization-maintaining fiber(PMF) and a fiber Bragg grating(FBG). In order to compare the pressure sensitivity for various kinds of PMF, three kinds of bow-tie PMF were employed as sensor heads. The maximum pressure sensitivity was measured as approximately -15.07nm/MPa, and an R2 value to represent sensor linearity was measured as ~0.992 at the sensor system using corresponding PMF over a pressure range of 0-0.3MPa. An FBG was utilized and located adjacent to the PMF segment for compensating temperature-induced errors in the measurement of pressure. The pressure sensitivity of the proposed sensor was improved by approximately four times compared with the previously reported pressure sensor based on polarization-maintaining photonic crystal fiber.

A Hybrid Fiber-Optic Sensor System for Multi-Stress Condition Monitoring of Wind Turbines (하이브리드 광섬유 센서 시스템을 이용한 풍력발전기의 다중물리량 상태감시)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.76-82
    • /
    • 2015
  • A hybrid fiber-optic sensor system which combines fiber Bragg grating sensors and a Michelson interferometer has been constructed and evaluated for condition monitoring of large scale wind turbines. In order to measure multiple stresses applied to wind turbines such as strain, temperature and vibration, the system uses single broadband light source. It addresses both types of sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light, of which coherence length is about 3.28mm, for the Michelson interferometer demodulation. Experimental results demonstrated that the proposed fiber-optic sensor system was capable of measuring strain and temperature with measurement accuracy of 1pm. Also 500~2000Hz vibration signals were successfully analyzed by applying FFT signal processing to interference signals.

FBG Sensor Demodulation Using a Double-Pass Mach-Zhender Interferometer (더블패스 마하젠더 간섭계를 이용한 광섬유 격자 센서의 파장복조)

  • Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • A wavelength-demodulation algorithm for FBG sensor is proposed by using a double-pass Mach-Zehnder interferometer. Zero-crossing points of double-passed interference signal are used to trigger the accurate $90^{\circ}C$ phase difference positions in the sensor signal, which is an essential condition in the subsequent arctangent and phase unwrapping signal processing. With the proposed method, we could efficiently measure various measurands, such as dynamic-, static-strain, and temperature, and ${\sim}8pm$ of wavelength resolution was obtained.

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Dynamic-strain analysis using fiber Bbragg grating sensor (광섬유 브래그 격자 센서를 이용한 동적 스트레인 신호의 해석)

  • 송민호;이상배;최상삼;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.79-83
    • /
    • 1998
  • We analyzed dynamic-strain perturbations applied to a fiber Bragg grating. The fiber Mach-Zehnder interferometer was used, and by analyzing the interference signal wecould obtain the frequency and relative amplitude information of the dynamic-perturbation. The minimum detectable dynamic-strain using the system was ~9.5 nstrain RMS/.root.(Hz) at 500 Hz. Also we proposed and demonstrated a new method which uses a temperature-discriminating dual-trating sensor head. With the method, we could measure the dynamic -strain as well as static-static-strain even for the case in which the optical pathe difference modulation was applied.

  • PDF

Fabrication of Optical Micro-Encoder Chips for Sub-Micron Displacement Measurements (발광다이오드를 이용한 초정밀 변위 측정용 마이크로 엔코더 칩 제작)

  • Kim, Keun-Joo;Kim, Yun-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.74-81
    • /
    • 1999
  • The integrated chip of optical micro-encoder was fabricated and the feasibility as displacement measurement device was confirmed. The geometry of micro-encoder was designed to utilize the optical interference effect on the second order of diffracted beams. The hybrid-type micro-encoder consisted with light emitting diode, photodiode, polyimide wave-guide and micro-lens provides stable micro-encoding results for high speed displacements. The measurement shows the resolution of displacement of 1.00 +/- 0.02 ${\mu}m$ for the grating with scale pitch of 2.0${\mu}m$.

  • PDF

Fiber Laser based Fiber Bragg Grating Strain Sensor (광섬유 레이저를 이용한 광섬유격자 스트레인 센서)

  • Kim, Jong-Seop;Park, Hyoung-Jun;Song, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1936-1938
    • /
    • 2002
  • A tunable fiber laser and the Quadrature Sampling technique are used to construct highly sensitive fiber-optic distributive Bragg grating strain sensor system. By using a wavelength-modulated fiber laser, the variations of strain-dependent Bragg wavelengths are transformed into the variations of time-domain reflection profiles. The locations of profile peaks that correspond to the applied strains are demodulated using a precise wavelength encoder that uses a fiber-optic Mach-Zehnder interferometer and Quadrature Sampling technique. With the extremely high sensitive optical encoder, we could obtain not only high sensitivity, but also very linear responses that was impossible with the conventional techniques. This paper is attempted to report the theoretical and experimental results.

  • PDF

Alternative Method of AWG Phase Measurement Based on Fitting Interference Intensity

  • Oh, Yong Ho;Lim, Sungwoo;Go, Chun Soo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.91-94
    • /
    • 2012
  • Arrayed waveguide grating (AWG) phase errors are normally assessed from the Fourier transform of the interference intensity data in the frequency domain method. However it is possible to identify the phases directly from the intensity data if one adopts a trial-and-error method. Since the functional form of the intensity profile is known, the intensities can be calculated theoretically by assuming arbitrary phase errors. Then we decide the phases that give the best fit to the experimental data. We verified this method by a simulation. We calculated the intensities for an artificial AWG which is given arbitrary phases and amplitudes. Then we extracted the phases and amplitudes from the intensity data by using our trial-and-error method. The extracted values are in good agreement with the originally given values. This approach yields better results than the analysis using Fourier transforms.