• 제목/요약/키워드: Grashof Number

검색결과 64건 처리시간 0.021초

수직 등온 평행 평판에서 상호작용 유동이 대류 열전달에 미치는 영향 (The Effect of the Interactive Flow on Convective Heat Transfer from two Vertical Isothermal Parallel Plates)

  • 김상영;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.765-774
    • /
    • 1992
  • 본 연구에서는 수직 등온 평행평판의 혼합대류 열전달에 대하여 두 평판의 길 이가 다른 경우를 고찰하고자 Reynolds수, Grashof수, 평판간격을 변수로 하여 수치해 석 하였다.

$4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성 (The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$)

  • 황영규;장명륜
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

동심환형 곡관의 혼합대류 열전달 현상에 관한 수치적 연구 (A Numerical Study on Mixed Convection Heat Transfer in Concentric Curved Annuli)

  • 최훈기;유근종
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.283-290
    • /
    • 2002
  • 동심환형 곡관의 내벽면에서 일정한 열전달이 있는 경우에 대하여 혼합대류의 유동장 및 열전달계수를 수치적으로 구하였다. 유동장은 주흐름방향으로의 압력과 온도구배가 일정한 완전발달흐름으로 가정하였다. 유동장의 특성을 나타내는 물리적 변수인 반경비는 0.2, 0.5, Grashof수는 8000, 80000 그리고 Dean수는 0-900범위에서 계산을 실시하였다. 반경비, Grashof수, Dean수를 변화시키며 2차유동, 열유속, 마찰비, 열전달계수에 대한 수치해를 구하였다. 마찰비와 Nusselt수는 Dear수의 제곱근에 비례하게 증가됨을 볼 수 있다.

경사평판에서의 핀길이가 자연대류 열전달에 미치는 영향에 관한 연구 (A Study on the Effects of Fin Length on Natural Convection Heat Transfer from a Inclined Flat Plate)

  • 천대희
    • 한국화재소방학회논문지
    • /
    • 제12권1호
    • /
    • pp.3-8
    • /
    • 1998
  • 전자산업은 장치의 소형경량화를 추구하면서 단위체적당 발생하는 열량이 중가하는데 이때 발생하 는 열의 냉각문제는 전자산업의 발전에 있어서 해결해야될 중요한 품제로 풍장하고 있다. 대류냉각 방 식 은 구조가 간단하고 가격이 져렴 하면서도 사용이 편리하기 때문에 전자기기의 냉각방식으로 많이 사용되고 있다. 이때 효율적인 냉각을 위하여 전열면적의 확장 및 대류유동이 찰 이루어지는 기하학적 형상이 제안되고 있다. 전자기기에서 발생되는 열을 효과적으로 냉각시키기 위한 냉각핀에서의 대류열 전달 특성을 고찰하기 위하여 공기중의 청상충류 상태에서 둥온으로 가열된 경사명판에 수칙으로 부착 된 명판핀에 대하여 무차원 핀길이 HIS, 경사각, Grashof수.변 화에 따른 자연대류 열전달 특성올 비 교 분석한 결과는 다음과 같다. 평균 열전달계수는 무차원 핀길이 HIS가감소하거나Grashof수가충 가하면 대류유동이 촉진되기 때문에 중가되는 경향을 나타내었고, 경사각이 중가되면 대류유동에 장애 를 받기 때문에 감소하는 경향을 나타내었다.

  • PDF

조건이 다른 수직 평형 평판에서 혼합대류 열전달 (Mixed Convection Heat Transfer from Two Vertical Parallel Plates with Different Conditions)

  • 김상영;정한식;권순석
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.243-252
    • /
    • 1992
  • A mixed convection heat transfer from two vertical parallel plates has been studied numerically by the finite difference method. Effects of the Grashof number, the relative length, $L_2/L_1$. the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ and the dimensionless plate spacing, $b/L_1$ are examined for the heat transfer. Independent of the Grashof numbers and $L_2/L_1$, the dimensionless vertical velocity distributions skewed on the left plate as ${\Phi}_2/{\Phi}_1$ decreased. The dimensionless vertical velocity distribution for $Gr/Re^2=1$ and ${\Phi}_2/{\Phi}_1=1.0$ is skewed to the right plate $L_2/L_1=0.5$, symmetric at $L_2/L_1=1.0$ and skewed to the left plate at $L_2/L_1=1.5$. But for $Gr/Re_2=10.0$ and ${\Phi}_2/{\Phi}_1=1.0$ reversed velocity patterns are obtained. Regardless of the Grashof numbers and $L_2/L_1$, the mean Nusselt nembers on the inside surface of the left plate decreases and those of the right inside surface increases as ${\Phi}_2/{\Phi}_1$ increases. Temperature, velocity and mean Nusselt number distributions are apparently not affected by $L_2/L_1$.

  • PDF

복사벽면으로 구성된 캐비티 내 전자열유체 유동 (HYDROMAGNETIC FLOW IN A CAVITY WITH RADIATIVELY ACTIVE WALLS)

  • 한조영;채종원;김정훈;전형열
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.87-94
    • /
    • 2010
  • Hydromagnetic flow in a cavity under a uniform magnetic field is studied numerically. The cavity is comprised of four radiatively active surfaces. Due to large temperature difference inside a cavity, the radiative interaction between walls is taken into account. The coupled momentum and energy equations are solved by SIMPLER algorithm while the radiant heat exchanges are obtained by the finite volume method for radiation. A Wide range of Grashof numbers is examined as a controlling parameter. Resultant flow and heat transfer characteristics are investigated as well.

차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성 (Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water)

  • 황영규
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kwon, Moo-Hyun;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.203-209
    • /
    • 2006
  • For $P_B=50,\;{\Delta}T=10K$, Ar=5, Pr=2.36, Le=0.015, Pe=1.26, Cv=1.11, the intensity of solutal convection (solutal Grashof number $Grs=3.44x10^4$) is greater than that of thermal convection (thermal Grashof number $Grt=1.81x10^3$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A($Hg_2Cl_2$) and B(He). With increasing the partial pressure of component B from 10 up to 200 Torr, the rate is decreased exponentially. The convective transport decreases with lower g level and is changed to the diffusive mode at 0.1 $g_0$. In other words, for regions in which the g level is 0.1 $g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than 0.1 $g_0$ can be adequate to ensure purely diffusive transport.

밑면에서 부분가열을 받는 경사4각형 밀폐공간내의 자연대류 열전달 및 유동특성 (Natural Convective Heat Transfer and Flow Characteristics in Inclined Rectangular Enclosures with Localized Heating from Below)

  • 김상호;정인기;김중엽
    • 대한설비공학회지:설비저널
    • /
    • 제13권3호
    • /
    • pp.148-156
    • /
    • 1984
  • The effect of inclination on the steady, two-dimensional, laminar natural convection in rectangular enclosures with localized heating from below has been investigated numerically. The enclosure was uniformly heated with a partial heat source at the center of the bottom wall and cooled from the upper wall while the other walls were insulated. The governing equations were solved numerically by using the ADI finite difference method with the SOR method. The computations were carrid out with air, Pr =0.733, in the Grashof number range, $1\times10^4\~3\times10^4$, for the inclination of the enclosures was varied from $0^{\circ}\;to\;90^{\circ}$. The effects of Grashof number and aspect ratio on the inclination for the transition of the flow pattern in enclosures were determined. From the results, it was found that the transition angles of the flow in the enclosures were greater in localized heating than in uniform heating from below, and that the inclination was to strongly effect on the heat transfer and the flow pattern within the enclosure.

  • PDF

Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer

  • Ha, Sung Ho;Kim, Geug Tae
    • 한국결정성장학회지
    • /
    • 제32권1호
    • /
    • pp.16-24
    • /
    • 2022
  • A computational study of combined thermal and solutal convection (double diffusive convection) in a sealed crystal growth reactor is presented, based on a two-dimensional numerical analysis of the nonlinear and strongly coupled partial differential equations and their associated boundary conditions. The average Nusselt numbers for the source regions are greater than those at the crystal regions for 9.73 × 103 ≤ Grt ≤ 6.22 × 105. The average Nusselt numbers for the source regions varies linearly and increases directly with the thermal Grashof number form 9.73 × 103 ≤ Grt ≤ 6.22 × 105 for aspect ratio, Ar (transport length-to-width) = 1 and 2. Additionally, the average Nusselt numbers for the crystal regions at Ar = 1 are much greater than those at Ar = 2. Also, the occurrence of one unicellular flow structure is caused by both the thermal and solutal convection, which is inherent during the physical vapor transport of Hg2Br2. When the aspect ratio of the enclosure increases, the fluid movement is hindered and results in the decrease of thermal buoyancy force.