• 제목/요약/키워드: Graphite particle

검색결과 117건 처리시간 0.026초

건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발 (Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process)

  • 전도만;나병기;이영우
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.332-338
    • /
    • 2018
  • 현재 리튬이온전지의 음극 소재 활물질로는 흑연이 주로 사용되고 있다. 그러나 흑연의 최대 이론 용량이 $372mA\;h\;g^{-1}$으로 제한되기 때문에 차세대 고용량 및 고에너지 밀도의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 여러 음극 소재 활물질 중에서 Si의 최대 이론 용량은 $4200mA\;h\;g^{-1}$으로 흑연의 최대 이론 용량보다 약 10배 이상 높은 값을 나타내고 있지만 부피 팽창율이 거의 400%로 크기 때문에 사이클이 진행될수록 비가역 용량이 증가하여 충전 대비 방전 용량이 현저히 감소하는 현상을 나타내고 있다. 이러한 문제점을 해결하기 위한 방법으로 Si 음극 소재 활물질의 입자 크기를 조절하여 기계적 응력 및 반응상의 체적 변화를 감소시켜 사이클 특성을 다소 향상시킬 수 있다. 따라서 Si 입자의 부피 팽창율에 따른 충전 및 방전 용량의 감소를 최소화하기 위해 공정 시간 및 원가 절감이 우수한 건식 방법으로 Si을 분쇄하여 사이클 특성 향상에 관한 연구를 진행 하였다. 본 논문에서는 진동밀을 이용하여 Si을 나노 크기로 제어하고 실험 변수에 따른 재료들의 물리화학적 특성과 전기화학적 특성을 측정하였다.

복합교반법에 의한 금속복합재료의 제조공정에 따른 강화재의 분산성 검토 (Investigation of Reinforced Distribution in Fabrication Process of Metal Matrix Composites by Combined Stirring Process)

  • 이동건;강충길
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.1-11
    • /
    • 2001
  • 본 논문은 금속복합재료를 반용융상태로 재가열하여 Thixoforming을 하는데 필요한 소재를 제공하기 위한 장비 설계와 제조방법 등에 관한 내용을 소개하고 있다. 장비 설계에서 기지재내에 강화재가 균일하게 분산되도록 하기 위하여 강화재의 연속주입 방법과 강화재의 온도를 제어하는 방법을 소개하고 있다. 일정한 양의 강화재를 기지재료 내에 분산시키는 것은 균일 혼합을 위하여 필요한 기술이다. 또한 분산시 강화재의 수분제거를 위하여 강화재의 온도를 제어하면서 연속적으로 강제분산시키는 것은 균일분산을 위하여 필요하다. 기지재의 초정 $\alpha$의 크기가 강화재의 분산성에 크게 영향을 미치기 때문에 기지재의 초기 온도가 초정$\alpha$의 크기에 미치는 영향 등을 검토하여 복합재료 빌렛트의 제조조건에 이용하였다.

  • PDF

이송식 아크플라즈마 장치에 의해 제조된 실리콘 나노분말의 특성에 대한 연구 (A Study on the Characteristics of Silicon Nanopowders Produced by Transferred Type Arc Plasma Apparatus)

  • 간우섭;박상희
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.909-917
    • /
    • 2021
  • This study was carried out experimentally on the production and properties of silicon nanopowders characteristics using a transferred type arc plasma apparatus. To investigate the properties of silicon nanopowder, the purity of argon gas(99.999%, 99.9%) and the partial pressure ratio of nitrogen gas(0~90%) were varied. The total pressure in chamber is 400Torr and the silicon chunk amount used as raw material is 300g. The power supplied to the cathode to generate arc plasma was 9~12kW/h, and the electrode was made of tungsten and graphite with a diameter of 13mm. The particle size, impurity elements and powder evaporation rate of the silicon powder were analyzed using the XRD, FE-SEM, TEM and electronic scale. According to the purity of argon gas, the silicon evaporation rate and the particle size were similar, and impurities were generated more in the case of 99.9% purity than 99.999%. When argon gas and nitrogen gas were mixed in the chamber, the silicon evaporation rate and particle size increased as the partial pressure ratio of nitrogen gas increased. In particular, when the partial pressure ratio of nitrogen gas was 80%, the silicon evaporation rate 80g/h, and the particle size was about 80~100nm.

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

PLAD법에 의한 탄소 플라즈마의 모델링 (The Modelling of Carbon Plume by Pulsed-laser ablation Method)

  • 소순열;정해덕;이진;박계춘;김창선;문채주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.41-45
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher. However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

  • PDF

Characterizations of Precipitated Zinc Powder Produced by Selective Leaching Method

  • Marwa F. Abd;F. F. Sayyid;Sami I. Jafar Al-rubaiey
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.54-63
    • /
    • 2024
  • This work investigated the influence of concentration and applied potential on the characteristics of zinc powder (purity, apparent density, morphology, particle size distribution, and particle zeta potential) produced by the electrochemical process from waste brass. High-purity zinc powder is obtained using selective leaching of industrial brass waste in acidic, neutral, and alkaline solutions. The free immersion method with and without voltage using linear polarization technique is used. In the electrochemical process, hydrochloric acid HCl in three different concentrations (0.1, 0.2, and 0.3) M is used. The time and the distance between the electrodes are set to be 30 min and 3 cm, respectively. It has been found that the percentage purity is 98%, 96%, and 94% for the acidic, neutral, and alkaline solutions, respectively. In addition, the morphology of zinc powder analyzed by SEM was dendritic and mossy. It has been recorded that the purity of zinc increases with the increase of the concentration and applied potential. The highest value of purity for zinc powder was %98.58 in 1000 mV and 0.3M concentration for graphite cathode.

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

카올린으로부터 합성한 $\beta$-Sialon의 열적.기계적 성질 (Thermomechanical Properties of $\beta$-Sialon Synthesized from Kaolin)

  • 이홍림;임헌진;김신;이형복
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.349-356
    • /
    • 1987
  • ${\beta}$-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350$^{\circ}C$ in N2-H2 atmosphere, using graphite as a reducing agent. The synthesized ${\beta}$-Sialon powder was pressurelessly sintered over 1450-1850$^{\circ}C$ in nitrogen atmosphere. The average particle size of ${\beta}$-Sialon powder was about 4.5$\mu\textrm{m}$. The relative density, M.O.R., fracture toughness and micro-hardness of ${\beta}$-Sialon ceramics sintered at 1800$^{\circ}C$ for 1 hour were 92%, 36 kpsi, 2.8MN/㎥/2 and 13.3 GN/㎡, respectively. The critical temperature difference (ΔT) in water quench thermal shock behavior showed about 375$^{\circ}C$ for the synthesized ${\beta}$-Sialon ceramics.

  • PDF

SPH 기법을 이용한 복합 적층판의 초고속 충돌 해석 (Numerical simulation of hypervelocity impacts on laminated composite plate targets using SPH method)

  • 이재훈;서송원;민옥기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.331-336
    • /
    • 2004
  • This paper is concerned with numerical simulation of hypervelocity impacts(HVIs) of a projectile on laminated composite plate targets using SPH method. A one-parameter visco-plasticity model and damage model is used to describe the HVIs response of composite materials. The numerical simulation was carried out for a steel projectile striking to aluminum plate targets and for an aluminum projectile striking to laminated graphite/epoxy (Gr/Ep) composite plate targets. Through the numerical simulation, comparison with the HVIs response of isotropic materials and composite materials is discussed.

  • PDF

김천규석으로부터 질화규소의 합성 (Synthesis of Silicon Nitride from Kimcheon Quartzite)

  • 이홍림;서원선;조덕호;이종민
    • 한국세라믹학회지
    • /
    • 제24권2호
    • /
    • pp.147-154
    • /
    • 1987
  • Silicon nitride powders were prepared by the simultaneous reduction and nitridation from powder mixtures of Kim cheon quartzite and carbon (graphite or carbon black) at1400$^{\circ}C$ for 10 hours in nitrogen atmosphere. The effects of the reaction variables on the yield of products and on the ${\alpha}$/${\beta}$ ratio were examined. The average particle size, density, and the ${\alpha}$/${\beta}$ ratio of the obtained si3N4 were 1.0$\mu\textrm{m}$, 3.10g/㎤ and 90/10, respectively. It was found that the Si3N4 powders obtained in this work were comparable to the foreign commercial products.

  • PDF