• 제목/요약/키워드: Graphite layer

검색결과 239건 처리시간 0.025초

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

그래핀 기반 기체 분리막의 연구동향 및 전망 (Current Status and Perspectives of Graphene-based Membranes for Gas Separation)

  • 유병민;박호범
    • 멤브레인
    • /
    • 제27권3호
    • /
    • pp.216-225
    • /
    • 2017
  • 원자 수준의 두께를 가지는 그래핀 단일층이 흑연으로부터 박리되어 구현된 이래로, 그래핀은 2차원 소재의 활용 가능성을 연 물질로서 각광받고 있으며, 그래핀 고유의 뛰어난 물리적 특성으로 인하여 활발히 연구되고 있다. 특히 분리막 분야는 그래핀과 산화 그래핀이 활용 가능한 가장 중요한 분야 중의 하나로서, 최근의 다양한 시뮬레이션 연구를 통하여 그 가능성이 입증되고 있다. 그래핀과 산화 그래핀은 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층 구조 등 분리막 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀졌다. 본 총설에서는 그래핀과 산화 그래핀의 고유 특성을 기반으로 기체 분리막 분야로의 응용 가능성과 현재까지의 개발 현황 및 향후 전망에 대하여 논하고자 한다.

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

MgO-Carbon 내화물의 산화반응기구와 TiC첨가에 의한 산화방지 효과 (Kinetics of Oxidation, and Effects of TiC on Oxidation Resistance in MgO-Carbon Refractory)

  • 천승호;공현식;전병세
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.657-662
    • /
    • 2004
  • 마그카본계 내화물의 산화저항성을 증대시키기 위하여 섭씨 100$0^{\circ}C$에서 120$0^{\circ}C$에서 산화기구를 조사하고, TiC를 첨가하여 산화저항성 증가에 대한 효과를 관찰하였다. 산소공급을 위해 공기를 분당 0.2리터의 속도로 흘려주었으며 열천칭으로 무게변화가 없어질 때까지 매 30초 간격마다 무게감소를 측정하였다 본 실험에서 사용된 마그카본계 시편의 산화거동과 관련한 유효확산 계수는 1.39${\times}$$10^{-4}$ $m^2$/sec이다. 이러한 실험조건에서 총체적인 산화공정은 산화된 기공층을 통하여 내부로 향하는 산소의 확산에 의해 지배되는 반응으로 해석할 수 있다. TiC를 첨가한 시편은 마그카본계 내화물의 산화 저항성을 증대시켰다.

CO2레이저 표면경화(表面硬化) 처리된 회주철(灰鑄鐵)의 피로특성(疲勞特性)에 관한 연구(硏究) (Study on the Fatigue Resistance of Gray Cast Iron in CO2 Laser Surface Hardening)

  • 박근웅;한유희;이상윤
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.169-181
    • /
    • 1995
  • This study has been performed to investigate some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and fatigue resistance of gray cast iron treated by laser surface hardening technique. Optical micrograph has shown that the dissolution of graphite flakes and the coarsening of lath martensite tend to increase with a small amount of retained austenite as the power density increases under the condition of a given traverse speed. Hardness measurements have revealed that as the power density increases, hardness values of outermost surface layer increases from Hv=620 to Hv=647 in case of traverse speed of 2.0m/min at gray cast iron. Fatigue test has exhibited that the fatigue strength of laser surface hardened specimen is superier compared to that of untreated specimen, showing that values for the fatigue strength at $N_f=10^7$ of gray cast iron laser-surface-hardened at a low power density of $4076w/cm^2$ and a high power density of $8153w/cm^2$ under the condition of a given traverse speed of 2.0m/min are $15kg_f/mm^2$ and $20kg_f/mm^2$, respectively, whereas the fatigue strength of untreated specimen is $11kg_f/mm^2$. Under high stress-low cycle condition a noraml brittleness fracture appears, whereas a ductile fracture with beach mark is observed in the specimen tested under low stress-high cycle condition.

  • PDF

흑연과 탄소나노튜브를 함유한 아크릴 복합체 박막의 열전도도 (Thermal conductivity of acrylic composite films containing graphite and carbon nanotube)

  • 김준영;강찬형
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.185-185
    • /
    • 2016
  • 아크릴계 수지(resin)에 인조 흑연과 탄소나노튜브(carbon nanotube)를 1:1 비율로 혼합한 충전제(filler)와 용제(solvent) 및 기타 첨가제(additives)를 혼합하여 방열도료를 제조하여 수직방향 열전도도를 상온에서 평가하였다. 충전제의 함량을 1, 2, 5 중량 %로 변화시키며 원료들을 준비하여 교반기로 혼합한 뒤 3단 롤 밀(three roll mill)로 분산공정을 진행하여 3 종류의 도료를 제조하였다. 제조한 도료를 가로 11 mm, 세로 11 mm, 두께 0.4 mm의 Al 5052 알루미늄 기판에 스프레이 코팅 방식으로 도포한 후 $150^{\circ}C$에서 30분 동안 열경화 건조 과정을 거쳐 샘플을 제작하였다. 측정 시료의 형상은 대략적으로 Fig. 1과 같다. 열전도도는 식 $k={\alpha}{\cdot}C_p{\cdot}{\rho}$를 사용해서 계산된다. 여기서 k는 열전도도($W/m{\cdot}K$), ${\alpha}$는 열확산계수($mm^2/s$), $C_p$는 비열($J/kg{\cdot}K$), ${\rho}$는 밀도($g/cm^3$)를 나타낸다. 열확산계수는 독일 NETZSCH 사의 Laser Flash Analysis 장비(모델명 LFA 457)를 사용하여 측정하였는데, 기판 뒤쪽에서 레이저를 조사하고 도료층 전면에서 적외선 온도센서를 통해 시간에 따른 온도 상승곡선을 구한 후, 두 물체의 계면에서의 접촉 열저항(contact thermal resistance)을 감안하여 장비에 내장되어 있는 소프트웨어로 열확산계수가 계산된다. 비열은 같은 회사의 DSC(Differential Scanning Calorimetry) 200 F3 장비를 사용해 측정했으며, 밀도는 부피와 질량을 측정한 값을 이용하여 계산하였다. 도료를 도포하지 않은 bare Al plate에 대해서는 쉽게 열확산계수, 비열, 밀도를 측정하여 열전도도를 구할 수 있다. 도료가 코팅된 샘플에 대해서는 도료층을 일부 떼어내 비열을 측정하고, 밀도를 구한 후, 도료층의 열전도도가 2-layer 법으로 장비 내장 소프트웨어로 계산된다, 이때 Al 기판의 열확산계수, 비열, 밀도는 미리 측정한 bare Al plate의 값을 적용하였다. 실험 결과를 Table 1에 정리하였다. 흑연과 탄소나노튜브를 혼합한 충전제를 함유한 아크릴 복합체 박막에서 측정된 열전도도는 보통 고분자 재료의 열전도도 값의 상한 영역에 육박하는 값이며, 충전제 함량이 증가할수록 열전도도가 증가하는 경향을 보이고 있다.

  • PDF

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

실리콘 용탕으로부터 직접 제조된 태양광용 다결정 실리콘의 SiC 오염 연구 (SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications)

  • 이예능;장보윤;이진석;김준수;안영수;윤우영
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.69-74
    • /
    • 2013
  • Silicon (Si) wafer was grown by using direct growth from Si melt and contaminations of wafer during the process were investigated. In our process, BN was coated inside of all graphite parts including crucible in system to prevent carbon contamination. In addition, coated BN layer enhance the wettability, which ensures the favorable shape of grown wafer by proper flow of Si melt in casting mold. As a result, polycrystalline silicon wafer with dimension of $156{\times}156$ mm and thickness of $300{\pm}20$ um was successively obtained. There were, however, severe contaminations such as BN and SiC on surface of the as-grown wafer. While BN powders were easily removed by brushing surface, SiC could not be eliminated. As a result of BN analysis, C source for SiC was from binder contained in BN slurry. Therefore, to eliminate those C sources, additional flushing process was carried out before Si was melted. By adding 3-times flushing processes, SiC was not detected on the surface of as-grown Si wafer. Polycrystalline Si wafer directly grown from Si melt in this study can be applied for the cost-effective Si solar cells.

옥천지향사대 내 수안보-수산 지역에 분포하는 함력천매암질암 기질의 화학 조성과 탄산염암의 안정동위원소 연구 (Geochemical and Stable Isotopic Studies of the Matrix of Pebble Bearing Phyllitic Rocks and Carbonate Rocks from the Suanbo and Susanri District in the Okchon Geosynclinal Zone)

  • 김규한;민경덕
    • 자원환경지질
    • /
    • 제29권1호
    • /
    • pp.25-33
    • /
    • 1996
  • Stable isotopic ratios of the carbonate rocks and chemical compositions of the matrix of pebble bearing phyllitic rocks known as the Hwanggangri Formation, which are in hot debate on their origin such as tillite, debris flow and turbidite, were determined to interpret their depositional environment. Argillaceous matrix of the pebble bearing phyllitic rocks has a high content of CaO (av. 19.5%) and MgO (av. 8.3%), corresponding to calcareous sandy shale. No difference of chemical compositions including trace elements and REE is in the matrices between the Hwanggangri and the Kunjasan Formations. Carbonate rocks from the Okchon zone and outside of the zone range $-2.5{\sim}+6.1$‰ in ${\delta}^{13}C$ and $+5.8{\sim}+25.9$‰ in ${\delta}^{18}O$, indicating normal marine limestone. However, unusally $^{13}C$ enriched carbonate rocks might be deposited in the highly evaporated sedimentary basin. A wide variation of ${\delta}^{18}O$ values is responsible for metamorphism with a $^{18}O$ depleted meteoric water. Isotopic equilibrium temperatures by graphite-calcite geothermometer show a higher metamorphic temperature ($547{\sim}589^{\circ}C$) in the Okchon zone than those ($265{\sim}292^{\circ}C$) in the Samtaesan Formation of the Chosun group. Rhythmic alternation of relatively thin shale with thin limestone in the Kounri Formation is not cherty layer but thin limesilicate bed by metasomatic replacement. Judging from the isotopic and chemical compositions of the carbonate rocks and calcareous matrix of the pebble bearing phyllitic rocks, the Hwangganari Formation was deposited in the shallow marine environment favorable to debris flow.

  • PDF