• 제목/요약/키워드: Graphene pressure sensor

검색결과 10건 처리시간 0.026초

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발 (Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene)

  • 임대윤;하태원;이칠형
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

산화 그래핀 복합소자의 압력에 따른 전기적 특성 변화 연구 (Electrical Characteristics of Pressure Device with Graphene Oxide Composite Structure)

  • 김용우;노기연;성형석;최우진;안용재;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.93-99
    • /
    • 2019
  • A pressure sensor is a device that converts an applied physical pressure into an electrical signal. Such sensors have a range of applications depending on the pressure level, from low to high pressure. Sensors that use physical pressure, when compared to those operating under air pressure, are not widely applied as they are inefficient. To solve this problem, graphene oxide, which exhibits good mechanical and electrical characteristics, was used to increase the efficiency of these pressure sensors. Graphene oxide has properties that control the movement of charges within the dielectric. Exploiting these properties, we evaluated the change in electrical characteristics when pressure was applied according to the ratio and thickness of the oxidation graph added to the pressure sensor.

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

다양한 변화가 가능한 그래핀 복합체 제작 및 응용 (Fabrication and Application of Graphene Composite with Various Modifications)

  • 박종성;김동수;김지관
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.201-204
    • /
    • 2020
  • In this study, we fabricated and evaluated graphene composite based 3D scaffolds and planar films. The hybrid composite was prepared by mixing a calculated amount of graphene nanopowder and polydimethylsiloxane in tetrahydrofuran solution. The hybrid composite is easy to manufacture into various forms using direct printing technology or a pressing method. A 3D scaffold structure was prepared at ambient temperature with a flow rate of 240 mm/min. The nozzle pressure was maintained at 350 kPa by adjusting the viscosity of the composite material. The planar film was prepared at different thicknesses using a roll-to-roll equipment. The prepared hybrid nanocomposites were evaluated to investigate their electrical properties according to temperature and mechanical deformation. The obtained results were consistent with each other. Therefore, it can be used effectively as sensors through shape definition.

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • 김병성;이종운;손기석;최민수;이동진;허근;남인철;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Using nano-micro-control technology to improve breathing pressure in vocal music technique teaching innovation

  • Jiayue Cui;Hongliang Zhang
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.239-251
    • /
    • 2023
  • In the present study, we aim to use nanotechnology sensors/actuators to capture pressure and frequency of voice singers and to send signals for improving breathing pressure. In this regard, a circular composite structure having 3 different layers are used. The core layer is nano-composite material reinforced with graphene nanoplatelets. The face sheets are piezo electric materials connected to electrical circuit capable of measuring and applying voltage to the piezoelectric layers. This sensors have extremely smaller size than conventional sensors attached to the neck of singer and, hence, minimizes the influences on the output voice of the singer. A brief theoretical framework are presented for nonlocal strain gradient theory and geometry of the sensor is described in detail. The controlling procedure along with experimental results on 20 amateur and professional singer participants are also presented. The results of the study indicate that the participants could gain benefit from the device for improving their ability in phonation and keeping their frequency at a constant level although they have difficulty in the beginning of the experiment getting used to the device.

이차원 나노 소재 기반 촉각 센서 기술 동향 (Research Trends of Two-Dimensional Nanomaterial-Based Tactile Sensors)

  • 민복기;김성준;이윤식;최춘기
    • 전자통신동향분석
    • /
    • 제33권1호
    • /
    • pp.123-130
    • /
    • 2018
  • Tactile sensors, which are commonly referred to as pressure and strain sensors, have been extensively investigated to meet the demands for attachable and wearable electronics for monitoring the health status or activity of human users. For this purpose, the introduction of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) with high mechanical strength at the atomic scale is very suitable for tactile sensors applicable for use in human-friendly devices. In this paper, we examine a descriptive summary of a tactile sensor and review state-of- the-art research trends of 2D material-based tactile sensors in terms of the material and architecture. Finally, we propose a roadmap for future studies into advanced tactile sensors based on our ongoing research.