Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.2.93

Electrical Characteristics of Pressure Device with Graphene Oxide Composite Structure  

Kim, Yong Woo (Department of Materials Engineering, Korea Polytechnic University)
Roh, Gi Yeon (Department of Materials Engineering, Korea Polytechnic University)
Sung, Hyeong Seok (Department of Materials Engineering, Korea Polytechnic University)
Choi, Woo jin (Department of Materials Engineering, Korea Polytechnic University)
Ahn, Yong Jae (Department of Materials Engineering, Korea Polytechnic University)
Lee, Seong Eui (Department of Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.2, 2019 , pp. 93-99 More about this Journal
Abstract
A pressure sensor is a device that converts an applied physical pressure into an electrical signal. Such sensors have a range of applications depending on the pressure level, from low to high pressure. Sensors that use physical pressure, when compared to those operating under air pressure, are not widely applied as they are inefficient. To solve this problem, graphene oxide, which exhibits good mechanical and electrical characteristics, was used to increase the efficiency of these pressure sensors. Graphene oxide has properties that control the movement of charges within the dielectric. Exploiting these properties, we evaluated the change in electrical characteristics when pressure was applied according to the ratio and thickness of the oxidation graph added to the pressure sensor.
Keywords
Graphene oxide; Dielectric; Reduced pressure; Capacitance; Electric characteristic; Pressure sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Je, C. A. Choi, S. Q. Lee, and W. S. Yang, Electron. Telecommun. Trends, 30, 21 (2015).
2 T. Christen, L. Donzel, and F. Greuter, IEEE Electr. Insul. Magazine, 26, 47 (2010). [DOI: https://doi.org/10.1109/mei.2010.5599979]   DOI
3 V. Sorkin and Y. W. Zhang, J. Mol. Model., 17, 2825 (2011). [DOI: https://doi.org/10.1007/s00894-011-0972-0]   DOI
4 H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, and T. L. Ren, Sci. Rep., 5, 8603 (2015). [DOI: https://doi.org/10.1038/srep08603]   DOI
5 A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A. C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M. C. Lemme, Nano Lett., 13, 3237 (2013). [DOI: https://doi.org/10.1021/nl401352k]   DOI
6 L. Donzel, F. Greuter, and T. Christen, IEEE Electr. Insul. Magazine, 27, 18 (2011). [DOI: https://doi.org/10.1109/mei.2011.5739419]   DOI
7 E. Martensson, B. Nettelbled, U. Gafvert, and L. Palmqvist, Proc. ICSD'98. Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No.98CH36132) (IEEE, Vasteras, Sweden, 1998) p. 548.
8 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci., 56, 1178 (2011). [DOI: https://doi.org/10.1016/j.pmatsci.2011.03.003]   DOI
9 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). [DOI: https://doi.org/10.1039/b917103g]   DOI
10 C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). [DOI: https://doi.org/10.1021/nl072090c]   DOI