• Title/Summary/Keyword: Graphene nanoribbon

Search Result 25, Processing Time 0.028 seconds

Redox Reaction Investigation of Graphene Nanoribbon

  • Yu, Young-Jun
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.35-37
    • /
    • 2018
  • The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.

Application of Graphene Nanoribbon Trench for C60 Fullerene Shuttle Device: Molecular Dynamics Simulations (풀러렌 셔틀 소자로 그래핀 나노리본 트렌치 응용에 관한 분자동력학 시뮬레이션 연구)

  • Kwon, Oh-Kuem;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.1
    • /
    • pp.887-894
    • /
    • 2018
  • We investigated the position controlling C60 fullerene encapsulated into a graphene-nanoribbon trench via classical molecular dynamics simulations. The graphene-nanoribbon trench can provide nanoscale empty spaces, and a C60 encapsulated therein can be considered as media for a nanoelectromechanical shuttle device. The classical molecular dynamics simulations presented here provide information on the potential application of a graphene-nanoribbon trench in a C60 shuttle device. Driving forces applied to C60 resulted in its motion toward the edges of the graphene-nanoribbon trench, the suction forces induced at both edges were balanced with the driving forces, and finally, the C60 fullerene gradually settled on the edges of the graphene-nanoribbon trench after several oscillations. The results of the present simulation suggest the importance of graphene-nanoribbon trenches encapsulating fullerenes in a wide range of applications in the field of nanotechnology.

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Theoretical Investigation of Edge-modified Zigzag Graphene Nanoribbons by Scandium Metal with Pyridine-like Defects: A Potential Hydrogen Storage Material

  • Mananghaya, Michael
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.253-256
    • /
    • 2014
  • Functionalization of zigzag graphene nanoribbon (ZGNR) segment containing 120 C atoms with pyridine (3NV-ZGNR) defects was investigated on the basis of density-functional theory (DFT) calculations, results show that edge-modified ZGNRs by Sc can adsorb multiple hydrogen molecules in a quasi-molecular fashion, thereby can be a potential candidate for hydrogen storage. The stability of Sc functionalization is dictated by a strong binding energy, suggesting a reduction of clustering of metal atoms over the metal-decorated ZGNR.

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Yu-Seok;Jeong, Min-Uk;Park, Jong-Yun;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.145.2-145.2
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

Analysis of read speed latency in 6T-SRAM cell using multi-layered graphene nanoribbon and cu based nano-interconnects for high performance memory circuit design

  • Sandip, Bhattacharya;Mohammed Imran Hussain;John Ajayan;Shubham Tayal;Louis Maria Irudaya Leo Joseph;Sreedhar Kollem;Usha Desai;Syed Musthak Ahmed;Ravichander Janapati
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.910-921
    • /
    • 2023
  • In this study, we designed a 6T-SRAM cell using 16-nm CMOS process and analyzed the performance in terms of read-speed latency. The temperaturedependent Cu and multilayered graphene nanoribbon (MLGNR)-based nanointerconnect materials is used throughout the circuit (primarily bit/bit-bars [red lines] and word lines [write lines]). Here, the read speed analysis is performed with four different chip operating temperatures (150K, 250K, 350K, and 450K) using both Cu and graphene nanoribbon (GNR) nano-interconnects with different interconnect lengths (from 10 ㎛ to 100 ㎛), for reading-0 and reading-1 operations. To execute the reading operation, the CMOS technology, that is, the16-nm PTM-HPC model, and the16-nm interconnect technology, that is, ITRS-13, are used in this application. The complete design is simulated using TSPICE simulation tools (by Mentor Graphics). The read speed latency increases rapidly as interconnect length increases for both Cu and GNR interconnects. However, the Cu interconnect has three to six times more latency than the GNR. In addition, we observe that the reading speed latency for the GNR interconnect is ~10.29 ns for wide temperature variations (150K to 450K), whereas the reading speed latency for the Cu interconnect varies between ~32 ns and 65 ns for the same temperature ranges. The above analysis is useful for the design of next generation, high-speed memories using different nano-interconnect materials.

Structural properties of vacancy defects, dislocations, and edges in graphene

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Kim, Young-Kuk;Ihm, Ji-Soon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.428-429
    • /
    • 2011
  • Recently, we performed ab initio total energy calculation and tight-binding molecular dynamics (TBMD) simulation to study structures and the reconstruction of native defects in graphene. In the previous study, we predicted by TBMD simulation that a double vacancy in graphene is reconstructed into a 555-777 composed of triple pentagons and triple heptagons [1]. The structural change from pentagon-octagon-pentagon (5-8-5) to 555-777 has been confirmed by recent experiments [2,3] and the detail of the reconstruction process is carefully studied by ab initio calculation. Pentagon-heptagon (5-7) pairs are also found to play an important role in the reconstruction of vacancy in graphene and single wall carbon nanotube [4]. In the TBMD simulation of graphene nanoribbon (GNR), we found the evaporation of carbon atoms from both the zigzag and armchair edges is preceded by the formation of heptagon rings, which serve as a gateway for carbon atoms to escape. In the simulation for a GNR armchair-zigzag-armchair junction, carbon atoms are evaporated row-by-row from the outermost row of the zigzag edge [5], which is in excellent agreement with recent experiments [2, 6]. We also present the recent results on the formation and development of dislocation in graphene. It is found that the coalescence of 5-7 pairs with vacancy defects develops dislocation in graphene and induces the separation of two 5-7 pairs. Our TBMD simulations also show that adatoms are ejected and evaporated from graphene surface due to large strain around 5-7 pairs. It is observed that an adatom wanders on the graphene surface and helps non-hexagonal rings change into stable hexagonal rings before its evaporation.

  • PDF

Direct Synthesis of Width-tailored Graphene Nanoribbon on Insulating Substrate

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.564-564
    • /
    • 2012
  • Graphene has been emerged as a fascinating material for future nanoelectronic applications due to its extraordinally electronic properties. However, their zero-bandgap semimetallic nature is a major problem for applications in high performance field-effect transistors (FETs). Graphene nanoribbons (GNRs) with narrow widths (${\geq}10nm$) exhibit semiconducting behavior, which can be used to overcome this problem. In previous reports, GNRs were produced by several approaches, such as electron beam lithography patterning, chemically derived GNRs, longitudinal unzipping of carbon nanotubes, and inorganic nanowire template. Using these methods, however, the width distribution of GNRs was a quiet broad and substantial defects were inevitably occurred. Here, we report a novel approach for fabricating width-tailored GNRs by focused ion beam-assisted chemical vapor deposition (FIB-CVD). Width-tailored phenanthrene ($C_{14}H_{10}$) templates for direct growth of GNRs were prepared on $SiO_2$/Si substrate by FIB-CVD. The GNRs on the templates were synthesized at $900-1,050^{\circ}C$ with introducing $CH_4$ $(20sccm)/H_2$ (10 sccm) mixture gas for 10-300 min. Structural characterizations of the GNRs were carried out using Raman spectroscopy, scanning electron microscopy, and atomic force microscopy.

  • PDF

A Study of Dynamic Properties of Graphene-Nanoribbon Memory (그래핀 나노리본 메모리의 동적 특성에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2014
  • In this work, we investigate the operational properties of this proposed device in detail via classical MD simulations. The bi-stability of the GNF(Graphene Nano-flake) shuttle encapsulated in bi-layer GNR could be achieved from the increase of the attractive energy between the GNRs when the GNF approached the edges of the GNRs. This result showed the potential application of the nano-electromechanical GNR memory as a NVRAM.