DOI QR코드

DOI QR Code

Analysis of read speed latency in 6T-SRAM cell using multi-layered graphene nanoribbon and cu based nano-interconnects for high performance memory circuit design

  • Received : 2022.04.09
  • Accepted : 2022.07.18
  • Published : 2023.10.20

Abstract

In this study, we designed a 6T-SRAM cell using 16-nm CMOS process and analyzed the performance in terms of read-speed latency. The temperaturedependent Cu and multilayered graphene nanoribbon (MLGNR)-based nanointerconnect materials is used throughout the circuit (primarily bit/bit-bars [red lines] and word lines [write lines]). Here, the read speed analysis is performed with four different chip operating temperatures (150K, 250K, 350K, and 450K) using both Cu and graphene nanoribbon (GNR) nano-interconnects with different interconnect lengths (from 10 ㎛ to 100 ㎛), for reading-0 and reading-1 operations. To execute the reading operation, the CMOS technology, that is, the16-nm PTM-HPC model, and the16-nm interconnect technology, that is, ITRS-13, are used in this application. The complete design is simulated using TSPICE simulation tools (by Mentor Graphics). The read speed latency increases rapidly as interconnect length increases for both Cu and GNR interconnects. However, the Cu interconnect has three to six times more latency than the GNR. In addition, we observe that the reading speed latency for the GNR interconnect is ~10.29 ns for wide temperature variations (150K to 450K), whereas the reading speed latency for the Cu interconnect varies between ~32 ns and 65 ns for the same temperature ranges. The above analysis is useful for the design of next generation, high-speed memories using different nano-interconnect materials.

Keywords

Acknowledgement

This work is partially supported by SR University, Warangal, Telangana, India (Dept. of Electronics and Communication Engineering).

References

  1. F. Farha, H. Ning, K. Ali, L. Chen, and C. Nugent, SRAMPUF-based entities authentication scheme for resource-constrained IoT devices, IEEE Internet Things J. 8 (2021), no. 7, 5904-5913. https://doi.org/10.1109/JIOT.2020.3032518
  2. C. J. Jhang, C. X. Xue, J. M. Hung, F. C. Chang, and M. F. Chang, Challenges, and trends of SRAM-based computing-in-memory for AI edge devices, IEEE trans, Circuits Syst. I: Regul. Pap. 68 (2021), no. 5, 1773-1786. https://doi.org/10.1109/TCSI.2021.3064189
  3. J. W. Su, X. Si, Y. C. Chou, T. W. Chang, W. H. Huang, Y. N. Tu, R. Liu, P. J. Lu, T. W. Liu, J. H. Wang, Y. L. Chung, J. S. Ren, F. C. Chang, Y. Wu, H. Jiang, S. Huang, S. H. Li, S. S. Sheu, C. I. Wu, C. C. Lo, R. S. Liu, C. C. Hsieh, K. T. Tang, S. Yu, and M. F. Chang, Two-way transpose multibit 6T SRAM computing-in-memory macro for inference-training AI edge chips, IEEE J. Solid-State Circuits. 57 (2022), no. 2, 609-624. https://doi.org/10.1109/JSSC.2021.3108344
  4. F. Shen, C. Xu, and J. Zhang, Statistical behavior guided block allocation in hybrid cache-based edge computing for cyber-physical-social systems, IEEE Access. 8 (2020), 29055-29063. https://doi.org/10.1109/ACCESS.2020.2972305
  5. Y. C. Chien and J. S. Wang, A 0.2 V 32-kb 10T SRAM with 41 nW standby power for IoT applications, IEEE Trans. Circuits Syst. I: Regul. Pap. 65 (2018), no. 8, 2443-2454. https://doi.org/10.1109/TCSI.2018.2792428
  6. V. Sharma, S. Vishvakarma, S. S. Chouhan, and K. Halonen, A write-improved low-power 12T SRAM cell for wearable wireless sensor nodes, ETRI J. 46 (2018), 2314-2333.
  7. Q. Liu, K. Fujiwara, X. Meng, S. R. Whiteley, T. van Duzer, N. Yoshikawa, Y. Thakahashi, T. Hikida, and N. Kawai, Latency and power measurements on a 64-kb hybrid Josephson-CMOS memory, IEEE Trans. Appl. Supercond. 17 (2007), no. 2, 526-529. https://doi.org/10.1109/TASC.2007.898698
  8. K. S. Venkataraman, G. Dong, and T. Zhang, Techniques mitigating update-induced latency overhead in shingled magnetic recording, IEEE Trans. Magn. 48 (2012), no. 5, 1899-1905. https://doi.org/10.1109/TMAG.2011.2178099
  9. K. V. Noren and M. Meng, Macro-model development for a FLOTOX EEPROM, IEEE Trans. Electron. Devices. 45 (1998), no. 1, 224-229. https://doi.org/10.1109/16.658835
  10. L. Z. Scheick, P. J. McNulty, and D. R. Roth, Measurement of the effective sensitive volume of FAMOS cells of an ultraviolet erasable programmable read-only memory, IEEE Trans. Nucl. Sci. 47 (2000), no. 6, 2428-2434. https://doi.org/10.1109/23.903788
  11. Y. Ouyang, Z. Xia, T. Yang, D. Shi, W. Zhou, and Z. Huo, Optimization of performance and reliability in 3D NAND flash memory, IEEE Electron Device Lett. 41 (2020), no. 6, 840-843. https://doi.org/10.1109/LED.2020.2987087
  12. W. H. Lee, D. K. Lee, K. S. Kim, K. O. Ahn, and K. D. Suh, Mobile ion-induced data retention failure in NOR flash memory cell, IEEE Trans. Device Mater. Reliab. 1 (2001), no. 2, 128-132. https://doi.org/10.1109/7298.956707
  13. T. Douseki and Y. Ohmori, BiCMOS circuit technology for a high-speed SRAM, IEEE J. Solid-State Circuits. 23 (1988), no. 1, 68-73. https://doi.org/10.1109/4.258
  14. J. Lee, S. Jeon, and S. K. Chang, Effect of shield line on noise margin and refresh time of planar DRAM cell for embedded application, ETRI J. 26 (2004), no. 6, 583-588. https://doi.org/10.4218/etrij.04.0103.0140
  15. J. Kim, M. Lee, Y. Song, and Y. I. Eom, DJFS: Providing highly reliable and high-performance file system with small-sized NVRAM, ETRI J. 39 (2017), no. 6, 820-831. https://doi.org/10.4218/etrij.17.0117.0558
  16. R. Rajaei and S. B. Mamaghani, A nonvolatile, low-power, and highly reliable MRAM block for advanced microarchitectures, IEEE Trans. Device Mater. Reliab. 17 (2017), no. 2, 472-474. https://doi.org/10.1109/TDMR.2017.2694228
  17. X. Fong and K. Roy, Complimentary polarizers STT-MRAM (CPSTT) for on-chip caches, IEEE Electron. Device Lett. 34 (2013), no. 2, 232-234. https://doi.org/10.1109/LED.2012.2234079
  18. H. Koike, K. Amanuma, T. Miwa, J. Yamada, and H. Toyoshima, FeRAM retention analysis method based on memory cell read signal voltage measurement, IEEE Trans. Semi. Manuf. 15 (2002), no. 2, 201-208. https://doi.org/10.1109/66.999593
  19. S. Kawashima, T. Endo, A. Yamamoto, K. Nakabayashi, M. Nakazawa, K. Morita, and M. Aoki, Bitline GND sensing technique for low-voltage operation FeRAM, IEEE J. Solid-State Circuits 37 (2002), no. 5, 592-598. https://doi.org/10.1109/4.997852
  20. Y. Chung and S. W. Shim, An experimental 0.8 V 256-kbit SRAM macro with boosted cell array scheme, ETRI J. 29 (2007), no. 4, 457-462. https://doi.org/10.4218/etrij.07.0106.0298
  21. J. P. Son, H. G. Byun, Y. H. Jun, K. Kim, and S. W. Kim, Temperature-adaptive back-bias voltage generator for an RCAT pseudo SRAM, ETRI J. 32 (2010), no. 3, 406-413. https://doi.org/10.4218/etrij.10.0109.0366
  22. A. Naeemi and J. D. Meindl, Compact physics-based circuit model for GNR interconnect, IEEE Trans. Electron. Devices 56 (2009), no. 9, 1822-1833. https://doi.org/10.1109/TED.2009.2026122
  23. X. Chuan, L. Hong, and K. Banerjee, Modeling, analysis, and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Device 56 (2009), no. 8, 1567-1578. https://doi.org/10.1109/TED.2009.2024254
  24. R. Murali, K. Brenner, Y. Yang, T. Beck, and J. D. Meindl, Resistivity of graphene nanoribbon interconnects, IEEE Electron. Device Lett. 30 (2009), no. 6, 611-613. https://doi.org/10.1109/LED.2009.2020182
  25. S. H. Nasiri, M. K. M. Farshi, and R. Faez, Stability analysis in graphene nanoribbon interconnects, IEEE Electron. Device Lett. 31 (2010), no. 12, 1458-1460. https://doi.org/10.1109/LED.2010.2079312
  26. S. Bhattacharya, D. Das, and H. Rahaman, Reduced thickness interconnect model using GNR to avoid crosstalk effects, J. Comput. Electron. 15 (2016), no. 2, 367-380. https://doi.org/10.1007/s10825-016-0794-5
  27. S. Bhattacharya, S. das, A. Mukhopadhyay, D. das, and H. Rahaman, Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method, J. Comput. Electron. 17 (2018), no. 4, 1536-1548. https://doi.org/10.1007/s10825-018-1251-4
  28. A. K. Nishad and R. Sharma, Analytical time-domain models for performance optimization of multilayer GNR interconnects, IEEE J. Sel. Top. Quantum Electron. 20 (2014), no. 1, 17-24.
  29. S. Bhattacharya, D. Das, and H. Rahaman, Stability analysis in top contact and side-contact graphene nanoribbon interconnects, IETE J. Res. 63 (2017), no. 4, 588-596. https://doi.org/10.1080/03772063.2017.1292155
  30. S. Bhattacharya, D. Das, and H. Rahaman, Analysis of simultaneous switching noise and IR-drop in side-contact multilayer graphene nanoribbon power distribution network, J. Circuit Syst. Comput 27 (2017), no. 1, 1850001-1850017.
  31. S. Das, S. Bhattacharya, D. das, and H. Rahaman, Modeling and analysis of electro-thermal impact of crosstalk induced gate oxide reliability in pristine and intercalation doped MLGNR interconnects, IEEE Trans. Device Mater. Reliab. 19 (2019), no. 3, 543-550. https://doi.org/10.1109/TDMR.2019.2933035
  32. S. Bhattacharya, D. Das, and H. Rahaman, Analysis of delay fault in GNR power interconnects, Int. J. Numer. Model. 31 (2017), no. 3, e2380.
  33. S. Bhattacharya, D. Das, and H. Rahaman, Modeling and performance analysis of graphene nanoribbon interconnects, Natl. Acad. Sci. Lett. 40 (2017), no. 2017, 325-329.  https://doi.org/10.1007/s40009-017-0572-3