• Title/Summary/Keyword: Graphene density

Search Result 176, Processing Time 0.034 seconds

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.

Investigation of Charge Transfer between Graphene and Oxide Substrates

  • Min, Kyung-Ah;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.1-186.1
    • /
    • 2014
  • Graphene, which is a 2-dimensional carbon material, has been attracting much interest due to its unique properties and potential applications. So far, many interesting experimental and theoretical works have been done concerning the electronic properties of graphene on various substrates. Especially, there are many experimental reports about doping in graphene which is caused by interaction between graphene and its supporting substrates. Here, we report the study of charge transfer between graphene and oxide substrates using density functional theory (DFT) calculations. In this study, we have investigated the charge transfer related with graphene considering various oxide substrates such as SiO2(0001) and MgO(111). Details in charge transfer between graphene and oxides are analyzed in terms of charge density difference, band structure and work function.

  • PDF

Domain Size and Density in Graphene Grown with Different CVD Growth

  • Gang, Cheong;Jeong, Da-Hui;Nam, Ji-Eun;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.1-264.1
    • /
    • 2013
  • Graphene is a two-dimensional carbon material whose structure is one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice. It has drawn significant attention with its distinguished structural and electrical properties. Extremely high mobility and a tunable band gap make graphene potentially useful for innovative approaches to electronics. Although mechanical exfoliation of graphite and decomposition of SiC surfaces upon thermal treatment have been the main method for graphene, they have some limitations in quality and scalability of as-produced graphene films. Solutionphase and solvothermal syntheses of graphene achieved a major improvement for processing, however for device fabrication, a reproducible method such as chemical vapor deposition (CVD) growth yielding high quality films of controlled thickness is required. In this research, we synthesized hexagonal graphene flakes on Cu foils by CVD method and controlled its coverage, density and the size of graphene domains by changing reaction parameters. It is important to control these parameters of graphene growth during synthesis in order to achieve tunable properties and optimized device performance.

  • PDF

Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance (고성능 아연-이온 전지의 고품질 집전체를 위한 그래핀 필름의 결함 제어)

  • Young-Geun Lee;Geon-Hyoung An
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.159-163
    • /
    • 2023
  • Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.

Size and Density of Graphene Domains Grown with Different Annealing Times

  • Jung, Da Hee;Kang, Cheong;Nam, Ji Eun;Kim, Jin-Seok;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3312-3316
    • /
    • 2013
  • Single crystals of hexagonal graphenes were successfully grown on Cu foils using the atmospheric pressure chemical vapor deposition (CVD) method. We investigated the effects of reaction parameters, such as the growth temperature and annealing time, on the size, coverage, and density of graphene domains grown over Cu foil. The mean size of the graphene domains increased significantly with increases in both the growth temperature and annealing time, and similar phenomena were observed in graphene domains grown by low pressure CVD over Cu foil. From the comparison of micro Raman spectroscopy in the graphene films grown with different annealing times, we found that the nucleation and growth of the domains were strongly dependent on the annealing time and growth temperature. Therefore, we confirmed that when reaction time was same, the number of layers and the degree of defects in the synthesized graphene films both decreased as the annealing time increased.

Improved Critical current Density in $MgB_2$ by Graphene nano-platelets (그래핀 나노플레이트에 의한 $MgB_2$의 임계전류밀도 향상)

  • Sinha, B.B.;Chung, K.C.;Chang, S.H.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.34-38
    • /
    • 2012
  • The effect of graphene inclusion in the ex-situ $MgB_2$ was analyzed with the help of resistivity behavior and critical current density studies. Amount of graphene was systematically varied from 0% for pristine sample to 3% by the weight of $MgB_2$. Graphene that is considered as a good source of carbon was found to be intact without any significant carbon doping in $MgB_2$ structure as reveled by XRD measurements. There was no signature of graphene inclusion as far as the superconducting transition is concerned which remained same at 39 K for all the samples. The transition width being sensitive to defect doping remained more or less about 2 K for all the samples showing no variation due to doping. Although there was no change in the superconducting transition or transition width, the graphene doped sample showed noticeable decrease in the overall resistivity behavior with respect to decrease in temperature. The graphene inclusion acted as effective pinning centers which have enhanced the upper critical field of these samples.

Electronic structure of B- or N-doped graphene

  • Kim, Jae-Hee;Min, Kyung-Ah
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.412-414
    • /
    • 2014
  • In this study, we investigate atomic and electronic structure of graphene with substitutional impurities such as boron or nitrogen atom using density functional theory (DFT) calculations. To investigate the effects of substitutional impurities in graphene, we consider a ($6{\times}6$) supercell of graphene in our calculations. For detailed electronic properties of graphene, we compare the energy band structure of B- or N-doped graphene with that of pristine graphene.

  • PDF

A Study on the Atomic and Electronic Structures of DNA-nucleobases-adsorbed Graphene Through First-principles LCAO Method (제일원리 LCAO 방법을 이용한 DNA Nucleobase 흡착된 그라핀의 원자 및 전자구조 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.510-514
    • /
    • 2011
  • Based on first-principles LCAO method, we study the electronic and atomic structures of DNA nucleobases adenine (A), thymine (T), guanine (G), and cytosine (C) adsorbed on graphene surfaces. The ${\pi}-{\pi}$ stacking interactions between graphene and nucleobases lead to the bilayer geometries similar to the Bernal stacked graphite. Through the density of states and charge density analyses, it is found that nucleobases are physisorbed on graphene by dispersive interactions with negligible charge exchange. Our calculations reproduce the atomic structures obtained in previous plane wave calculations accurately with much less computation, and well describe the delocalized ${\pi}-{\pi}$ interactions in graphene-nucleobases system, indicating that the LCAO method is very efficient for investigating graphene-bio systems.

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size (큰 결정 크기를 가지는 단일층 그래핀 성장을 위한 구리 호일의 전해연마 공정 최적화)

  • Kim, Jaeeuk;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • Choe, Sun-Hyeong;Lee, Jae-Hyeon;;Kim, Byeong-Seong;Choe, Yun-Jeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF