Browse > Article
http://dx.doi.org/10.5369/JSST.2017.26.2.122

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size  

Kim, Jaeeuk (School of Electronics Engineering, Kyungpook National University)
Park, Hongsik (School of Electronics Engineering, Kyungpook National University)
Publication Information
Journal of Sensor Science and Technology / v.26, no.2, 2017 , pp. 122-127 More about this Journal
Abstract
Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.
Keywords
graphene; electropolishing; surface roughness; grain boundary;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W.Choi, I.Lahiri, R.Seelaboyina and Y.S.Kang, "Synthesis of graphene and its applications: a review", Crit. Rev. Solid State Mater. Sci., Vol. 35, pp. 52-71, 2010   DOI
2 F.Schedin, A.K.Geim, S.V.Morozov, E.W.Hill, P.Blake, M.I.Katsnelson and K.S.Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007   DOI
3 H.J.Yoon, D.H.Jun, J.H.Yang, Z.Zhou, S.S.Yang and M.M.C.Cheng, "Carbon dioxide gas sensor using a graphene sheet", Sens. Actuators, B:chem., Vol. 157, pp. 310-313, 2011   DOI
4 H.Choi, J.S.Choi, J-S Kim, J-H. Choe, K.H.Chung, J-W. Shin, J.T.Kim, D-H.Youn, K-C.Kim, J-I. Lee, S-Y.Choi, P.Kim, C-G.Choi and Y-J.Yu, "Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers", small, Vol. 10, pp. 3685-3691, 2007
5 Y.H.Kim, S.J.Kim, Y-J.Kim, Y-S.Shim, S.Y.Kim, B.H.Hong and H.W.Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending", ACS Nano, Vol. 9, pp. 10453-10460, 2015   DOI
6 B.Zhang, Q.Li and T.Cui, "Ultra-sensitive suspended graphene nanocomposite cancers with strong suppression of electrical noise", Biosens. Bioelectron., Vol. 31, pp. 105-109, 2012   DOI
7 J.D.Fowler, M.J.Allen, V.C.Tung, Y.Yang, R.B.Kaner and B.H.Weiller, "Practical chemical sensors from chemically derived graphene", ACS Nano, Vol. 3, pp. 301-306, 2009   DOI
8 K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva and A.A.Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, pp. 666-669, 2004   DOI
9 S.Pei and H-M.Cheng, "The reduction of graphene oxide", Carbon, Vol. 50, pp. 3210-3228, 2012   DOI
10 X.Li, W.Cai, L.Colombo and R.S.Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling", Nano Lett., Vol. 9, pp. 4268-4272, 2009   DOI
11 W.A.De.Heer, C.Berger, X.Wu, P.N.First, E.H.Conrad, X.Li, T.Li, M.Sprinkle, J.Hass, M.L.Sadowski, M.Potemski, G.Martinez, "Epitaxial graphene", Solid State Commun., Vol. 143, pp. 92-100, 2007   DOI
12 H.Zhang, G.Lee, C.Gong, L.Colombo and K.Cho, "Grain boundary effect on electrical transport properties of graphene", J. Phys. Chem., Vol. 118, pp. 2338-2343, 2014
13 Q.Yu, L.A.Jauregui, W.Wu, R.Colby, J.Tian, Z.Su, H.Cao, Z.Liu, D.Pandey, D.Wei, T.F.Chung, P.Peng, N.P.Guisinger, E.A.Stach, J.Bao, S.S.Pei and Y.P.Chen, "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition", Nat. Mater., Vol. 10, pp. 443-449, 2011   DOI
14 Z.Luo, Y.Lu, D.W.Singer, M.E.Berck, L.A.Somers, B.R.Goldsmith and A.T.C.Johnson, "Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure", Chem. Mater., Vol. 23 pp. 1441-1447, 2011   DOI
15 G.H.Han, F.Gunes, J.J.Bae, E.S.Kim, S.J.Chae, H-J.Shin, J-Y. Choi, D.Pribat and Y.H.Lee, "Influence of copper morphology in forming nucleation seeds for graphene growth", Nano Lett., Vol. 11, pp. 4144-4148, 2011   DOI
16 O.V.Yazyev and S.G.Louie, "Electronic transport in polycrystalline graphene", Nat. Mater., Vol. 9, Pp.806-809, 2010   DOI
17 D.H.Duong, G.H.Han, S.M.Lee, F.Gunes, E.S.Kim, S.T. Kim, H.Kim, Q.H.Ta, K.P.So, S.J.Yoon, S.J.Chae, Y.W.Jo, M.H.Park, S.H.Chae, S.C.Lim, J.Y.Choi and Y.H.Lee, "Probing graphene grain boundaries with optifcal microscopy", Nature, Vol. 490, pp. 235-239, 2012   DOI
18 K.Nagashio, T.Nishimura, K.Kita and A.Toriumi, "Mobility variations in mono- and multi-layer graphene films", Appl. Phys. Express, Vol. 2, 025003, 2009   DOI
19 L.Gan, H.Zhang, R.Wu, Q.Zhang, X.Ou, Y.Ding, P.Sheng and Z.Luo, "Grain size control in the fabrication of large single-crystal bilayer graphene structures", Nanoscale, Vol. 7, pp. 2391-2399, 2015.   DOI