Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.2.116

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach  

Moon, Hye Sook (Department of Organic Material Science and Engineering, Pusan National University)
Lee, Ji Hye (Department of Organic Material Science and Engineering, Pusan National University)
Kwon, Soonchul (School of Civil and Environmental Engineering, Georgia Institute of Technology)
Kim, Il Tae (Department of Chemical and Biological Engineering, Gachon University)
Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Carbon letters / v.16, no.2, 2015 , pp. 116-120 More about this Journal
Abstract
We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.
Keywords
sodium ion battery; anode; graphene; graphene oxide; density functional theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim MC, Hwang GS, Ruoff RS. Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys, 131, 064704 (2009). http://dx.doi.org/10.1063/1.3197007.   DOI
2 Pei SF, Cheng HM. The reduction of graphene oxide. Carbon, 50, 3210 (2012). http://dx.doi.org/10.1016/j.carbon.2011.11.010.   DOI   ScienceOn
3 Gao XF, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C, 114, 832 (2010). http://dx.doi.org/10.1021/Jp909284g.   DOI
4 Yan JA, Chou MY. Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B, 82, 125403 (2010). http://dx.doi.org/10.1103/Physrevb.82.125403.   DOI
5 Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater, 23, 947 (2013). http://dx.doi.org/10.1002/adfm.201200691.   DOI
6 Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci, 16, 168 (2012). http://dx.doi.org/10.1016/j.cossms.2012.04.002.   DOI
7 Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci, 6, 2312 (2013). http://dx.doi.org/10.1039/C3ee41031e.   DOI
8 Kim SW, Seo DH, Ma XH, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2, 710 (2012). http://dx.doi.org/10.1002/aenm.201200026.   DOI
9 Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci, 5, 5884 (2012). http://dx.doi.org/10.1039/C2ee02781j.   DOI
10 David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes. Acs Nano, 8, 1759 (2014). http://dx.doi.org/10.1021/Nn406156b.   DOI
11 Xie XQ, Su DW, Chen SQ, Zhang JQ, Dou SX, Wang GX. $SnS_2$ nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem Asian J, 9, 1611 (2014). http://dx.doi.org/10.1002/asia.201400018.   DOI
12 Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865 (1996). http://dx.doi.org/10.1103/PhysRevLett.77.3865.   DOI
13 Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169 (1996). http://dx.doi.org/10.1103/PhysRevB.54.11169.   DOI
14 Kresse G, Hafner J. Abinitio molecular-dynamics for liquid-metals. Phys Rev B, 47, 558 (1993). http://dx.doi.org/10.1103/Phys-RevB.47.558.   DOI
15 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758 (1999). http://dx.doi.org/10.1103/PhysRevB.59.1758.   DOI
16 Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 54, 16533 (1996). http://dx.doi.org/10.1103/Phys-RevB.54.16533.   DOI
17 Kwon S, Choi JI, Lee SG, Jang SS. A density functional theory (DFT) study of $CO_2$ adsorption on Mg-rich minerals by enhanced charge distribution. Comput Mater Sci, 95, 181 (2014). http://dx.doi.org/10.1016/j.commatsci.2014.07.042.   DOI
18 Lee SG, Choi JI, Koh W, Jang SS. Adsorption of beta-D-glucose and cellobiose on kaolinite surfaces: density functional theory (DFT) approach. Appl Clay Sci, 71, 73 (2013). http://dx.doi.org/10.1016/j.clay.2012.11.002.   DOI
19 Kwon S, Lee SG, Chung E, Lee WR. $CO_2$ adsorption on $H_2O$-saturated BaO(1 0 0) and induced barium surface dissociation. Bull Korean Chem Soc, 36, 11 (2015).   DOI
20 Koh W, Choi JI, Donaher K, Lee SG, Jang SS. Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a firstprinciples study. ACS Appl Mater Interfaces, 3, 1186 (2011). http://dx.doi.org/10.1021/Am200018w.   DOI
21 Koh W, Choi JI, Jeong E, Lee SG, Jang SS. Li adsorption on a Fullerene-Single wall carbon nanotube hybrid system: density functional theory approach. Curr Appl Phys, 14, 1748 (2014). http://dx.doi.org/10.1016/j.cap.2014.09.031.   DOI
22 Koh W, Moon HS, Lee SG, Choi JI, Jang SS. A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system. ChemPhysChem, 16, 789 (2015). http://dx.doi.org/10.1002/cphc.201402675.   DOI
23 Koh W, Choi JI, Lee SG, Lee WR, Jang SS. First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system. Carbon, 49, 286 (2011). http://dx.doi.org/10.1016/j.carbon.2010.09.022.   DOI
24 Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B, 13, 5188 (1976). http://dx.doi.org/10.1103/PhysRevB.13.5188.   DOI
25 Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 132, 154104 (2010). http://dx.doi.org/10.1063/1.3382344.   DOI   ScienceOn
26 Manz TA, Sholl DS. Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J Chem Theory Comput, 8, 2844 (2012). http://dx.doi.org/10.1021/Ct3002199.   DOI
27 Manz TA, Sholl DS. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J Chem Theory Comput, 6, 2455 (2010). http://dx.doi.org/10.1021/Ct100125x.   DOI