DOI QR코드

DOI QR Code

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size

큰 결정 크기를 가지는 단일층 그래핀 성장을 위한 구리 호일의 전해연마 공정 최적화

  • Kim, Jaeeuk (School of Electronics Engineering, Kyungpook National University) ;
  • Park, Hongsik (School of Electronics Engineering, Kyungpook National University)
  • Received : 2017.03.06
  • Accepted : 2017.03.25
  • Published : 2017.03.31

Abstract

Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.

Keywords

References

  1. W.Choi, I.Lahiri, R.Seelaboyina and Y.S.Kang, "Synthesis of graphene and its applications: a review", Crit. Rev. Solid State Mater. Sci., Vol. 35, pp. 52-71, 2010 https://doi.org/10.1080/10408430903505036
  2. F.Schedin, A.K.Geim, S.V.Morozov, E.W.Hill, P.Blake, M.I.Katsnelson and K.S.Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007 https://doi.org/10.1038/nmat1967
  3. H.J.Yoon, D.H.Jun, J.H.Yang, Z.Zhou, S.S.Yang and M.M.C.Cheng, "Carbon dioxide gas sensor using a graphene sheet", Sens. Actuators, B:chem., Vol. 157, pp. 310-313, 2011 https://doi.org/10.1016/j.snb.2011.03.035
  4. H.Choi, J.S.Choi, J-S Kim, J-H. Choe, K.H.Chung, J-W. Shin, J.T.Kim, D-H.Youn, K-C.Kim, J-I. Lee, S-Y.Choi, P.Kim, C-G.Choi and Y-J.Yu, "Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers", small, Vol. 10, pp. 3685-3691, 2007
  5. Y.H.Kim, S.J.Kim, Y-J.Kim, Y-S.Shim, S.Y.Kim, B.H.Hong and H.W.Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending", ACS Nano, Vol. 9, pp. 10453-10460, 2015 https://doi.org/10.1021/acsnano.5b04680
  6. B.Zhang, Q.Li and T.Cui, "Ultra-sensitive suspended graphene nanocomposite cancers with strong suppression of electrical noise", Biosens. Bioelectron., Vol. 31, pp. 105-109, 2012 https://doi.org/10.1016/j.bios.2011.09.046
  7. J.D.Fowler, M.J.Allen, V.C.Tung, Y.Yang, R.B.Kaner and B.H.Weiller, "Practical chemical sensors from chemically derived graphene", ACS Nano, Vol. 3, pp. 301-306, 2009 https://doi.org/10.1021/nn800593m
  8. K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva and A.A.Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, pp. 666-669, 2004 https://doi.org/10.1126/science.1102896
  9. S.Pei and H-M.Cheng, "The reduction of graphene oxide", Carbon, Vol. 50, pp. 3210-3228, 2012 https://doi.org/10.1016/j.carbon.2011.11.010
  10. X.Li, W.Cai, L.Colombo and R.S.Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling", Nano Lett., Vol. 9, pp. 4268-4272, 2009 https://doi.org/10.1021/nl902515k
  11. W.A.De.Heer, C.Berger, X.Wu, P.N.First, E.H.Conrad, X.Li, T.Li, M.Sprinkle, J.Hass, M.L.Sadowski, M.Potemski, G.Martinez, "Epitaxial graphene", Solid State Commun., Vol. 143, pp. 92-100, 2007 https://doi.org/10.1016/j.ssc.2007.04.023
  12. O.V.Yazyev and S.G.Louie, "Electronic transport in polycrystalline graphene", Nat. Mater., Vol. 9, Pp.806-809, 2010 https://doi.org/10.1038/nmat2830
  13. H.Zhang, G.Lee, C.Gong, L.Colombo and K.Cho, "Grain boundary effect on electrical transport properties of graphene", J. Phys. Chem., Vol. 118, pp. 2338-2343, 2014
  14. Q.Yu, L.A.Jauregui, W.Wu, R.Colby, J.Tian, Z.Su, H.Cao, Z.Liu, D.Pandey, D.Wei, T.F.Chung, P.Peng, N.P.Guisinger, E.A.Stach, J.Bao, S.S.Pei and Y.P.Chen, "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition", Nat. Mater., Vol. 10, pp. 443-449, 2011 https://doi.org/10.1038/nmat3010
  15. Z.Luo, Y.Lu, D.W.Singer, M.E.Berck, L.A.Somers, B.R.Goldsmith and A.T.C.Johnson, "Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure", Chem. Mater., Vol. 23 pp. 1441-1447, 2011 https://doi.org/10.1021/cm1028854
  16. G.H.Han, F.Gunes, J.J.Bae, E.S.Kim, S.J.Chae, H-J.Shin, J-Y. Choi, D.Pribat and Y.H.Lee, "Influence of copper morphology in forming nucleation seeds for graphene growth", Nano Lett., Vol. 11, pp. 4144-4148, 2011 https://doi.org/10.1021/nl201980p
  17. D.H.Duong, G.H.Han, S.M.Lee, F.Gunes, E.S.Kim, S.T. Kim, H.Kim, Q.H.Ta, K.P.So, S.J.Yoon, S.J.Chae, Y.W.Jo, M.H.Park, S.H.Chae, S.C.Lim, J.Y.Choi and Y.H.Lee, "Probing graphene grain boundaries with optifcal microscopy", Nature, Vol. 490, pp. 235-239, 2012 https://doi.org/10.1038/nature11562
  18. K.Nagashio, T.Nishimura, K.Kita and A.Toriumi, "Mobility variations in mono- and multi-layer graphene films", Appl. Phys. Express, Vol. 2, 025003, 2009 https://doi.org/10.1143/APEX.2.025003
  19. L.Gan, H.Zhang, R.Wu, Q.Zhang, X.Ou, Y.Ding, P.Sheng and Z.Luo, "Grain size control in the fabrication of large single-crystal bilayer graphene structures", Nanoscale, Vol. 7, pp. 2391-2399, 2015. https://doi.org/10.1039/C4NR06607C