• Title/Summary/Keyword: Graphene Patterning

Search Result 28, Processing Time 0.029 seconds

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse (펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구)

  • Jeong, Tae-In;Kim, Seung-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.157-162
    • /
    • 2020
  • In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors

  • Na, Youngeun;Han, Jaehyun;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2017
  • Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.

Selective Graphene Oxide Reduction Utilizing Photon Energy (광에너지를 활용한 선택적 산화그래핀의 환원)

  • Shin, Jae-Soo;Choi, Eunmi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.16-20
    • /
    • 2018
  • Graphene is attracting attention due to its outstanding properties as line material for next-generation semiconductor. Graphene pattern technology is essential to apply graphene line. Selective graphene oxide reduction as one of graphene pattern method does not require a substrate thereby a high flexibility device can be applied. Particularly, the method using photon energy has advantages of short process time and environment friendly. In this review, we introduce the photocatalytic method and the photo-thermal energy conversion method using photon energy in the selective reduction process of graphene oxides.

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Carbon Nanoscrolls from CVD Grown Graphene

  • Jang, A-Rang;Shin, Hyeon-Suk;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.574-574
    • /
    • 2012
  • We report a simple way of fabricating high-quality carbon nanoscrolls (CNSs) by taking advantage of strain relief due to large difference in strain at the interface of graphene and underlying layer. This method allows strain-controlled self rolling-up of monolayer graphene during etching process at predefined positions on SiO2/Si substrates by photolithography. The size and the length of the CNSs can be easily controlled by adjusting the thickness of the underlying layer and by pre-patterning. Raman spectroscopy studies show that the CNSs is free of significant defects, and the electronic structure and phonon dispersion are slightly different from those of two-dimensional graphene. The preparation of high-quality CNSs may open up new opportunities for both fundamental and applied research of CNSs.

  • PDF

Early Stage of Pentacene Growth on the CYTOP Doped Graphene Surface

  • Yang, Mi-Hyun;Lee, Kyoung-Jae;Kumar, Yogesh;Ihm, Kyuwook;Kang, Tai-Hee;Ahn, Joung-Real
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.1-142.1
    • /
    • 2013
  • The patterning and doping technique enables graphene to replace the metal electrode as a charge injection layer in the pentacene based thin film transistor. However, it is known that pentacene molecules form lying-down coordination on the graphene surface. Pentacene thin film showed that the highly occupied molecular orbital is 0.2~0.4 eV lower in the standing up coordination than in the lying down coordination. Here, we report the formation of standing-up coordination and lowered HOMO level of the pentacene layer grown on the graphene layer doped with CYTOP.

  • PDF