• Title/Summary/Keyword: Graph property

Search Result 130, Processing Time 0.049 seconds

RADIO NUMBER OF TRANSFORMATION GRAPHS OF A PATH

  • YOGALAKSHMI, S.;SOORYANARAYANA, B.;RAMYA, RAMYA
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.59-74
    • /
    • 2017
  • A radio labeling of a graph G is a function $f:V(G){\rightarrow}\{1,2,{\ldots},k\}$ with the property that ${\mid}f(u)-f(v){\mid}{\geq}1+diam(G)-d(u,v)$ for every pair of vertices $u,v{\in}V(G)$, where diam(G) and d(u, v) are diameter and distance between u and v in the graph G respectively. The radio number of a graph G, denoted by rn(G), is the smallest integer k such that G admits a radio labeling. In this paper, we completely determine radio number of all transformation graphs of a path.

Shortest Path-Finding Algorithm using Multiple Dynamic-Range Queue(MDRQ) (다중 동적구간 대기행렬을 이용한 최단경로탐색 알고리즘)

  • Kim, Tae-Jin;Han, Min-Hong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.179-188
    • /
    • 2001
  • We analyze the property of candidate node set in the network graph, and propose an algorithm to decrease shortest path-finding computation time by using multiple dynamic-range queue(MDRQ) structure. This MDRQ structure is newly created for effective management of the candidate node set. The MDRQ algorithm is the shortest path-finding algorithm that varies range and size of queue to be used in managing candidate node set, in considering the properties that distribution of candidate node set is constant and size of candidate node set rapidly change. This algorithm belongs to label-correcting algorithm class. Nevertheless, because re-entering of candidate node can be decreased, the shortest path-finding computation time is noticeably decreased. Through the experiment, the MDRQ algorithm is same or superior to the other label-correcting algorithms in the graph which re-entering of candidate node didn’t frequently happened. Moreover the MDRQ algorithm is superior to the other label-correcting algorithms and is about 20 percent superior to the other label-setting algorithms in the graph which re-entering of candidate node frequently happened.

  • PDF

A Hamiltonian Property of Pyramid Graphs (피라미드 그래프의 헤밀톤 특성)

  • Chang Jung-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.253-260
    • /
    • 2006
  • In this paper, we analyze the Hamiltonian property of Pyramid graphs. We prove that it is always possible to construct a Hamiltonian cycle of length $(4^N-1)/3$ by applying the proposed algorithm to construct series of cycle expansion operations into two adjacent cycles in the Pyramid graph of height N.

Minimum Design of Fault-Tolerant Arrangement Graph for Distributed &Parallel System (분산/병렬 시스템을 위한 최소화의 오류-허용 방사형 그래프 설계)

  • Jun, Moon-Seog;Lee, Moon-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3088-3098
    • /
    • 1998
  • The arrangement graph, which is a viable interconnection scheme for parallel and distributed systems, has been proposed as an attactive altemative to the n-cube. However, A fault tolerant design model which is well suitable for the arrangement graph doesn't has been proposd until recently, but fault tolerant design modelsfor many schemes have been proposed ina large number of paper. So, our paper presents a new fault tolerant design technique suited for the arrangement graph. To maintains the previous structures when it ocurs a fault in the current processing, the scheme properly sugbstitutes a fault-componnent into the existing structures by adding a spare component. the first of all, it converts arrangement graph into a circulant graph using the hamiltonian property and then uses automorphism of circulant graph to tolerate faults. Also, We optimize the cost of rate fault tolerant architectures by adding exactly k spare processor while tolerating up to k processor and minimizing the maximum number of limks per processor. Specially, we proposes a new techniue to minimize the maximum number of links.

  • PDF

Efficient Evaluation of Path Expressions Using Connectivity of Nodes (노드의 연결성을 이용한 패스 표현의 효과적인 처리)

  • Lee, Tae-Gyeong
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.337-344
    • /
    • 2002
  • Recently, there has been a lot of research on graph-type data because it can model seamless the application domains such as GIS, network, WWW, multimedia presentations etc., and domain in which the data sequence is important. In this paper, an efficient code system, called node code system, is proposed to evaluate paths of DAG in a multimedia presentation graph. The node code system assigns a unique binary string to each node of a graph. The comparison of node codes of two nodes tells the connectivity between the nodes without actual traversal of a graph. The method using the property of the node code system allows us to construct the paths between two nodes more efficiently than the method using conventional graph traversals. The algorithms to construct paths using the node code system are provided.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a Quantized Space, and its improvements (격자화된 공간상에서 4중-나무 구조를 이용한 가시성 검사를 바탕으로 한 새로운 경로 계획 알고리즘과 그 개선 방안들)

  • Kim, Jung-Tae;Kim, Dai-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2010
  • In this paper, we introduce a new path planning algorithm which combines the merits of a visibility graph algorithm and an adaptive cell decomposition. We quantize a given map with empty cells, blocked cells, and mixed cells, then find the optimal path on the quantized map using a visibility graph algorithm. For reducing the number of the quantized cells we use the quad-tree technique which is used in an adaptive cell decomposition, and for improving the performance of the visibility checking in making a visibility graph we propose a new visibility checking method which uses the property of the quad-tree instead of the well-known rotational sweep-line algorithm. For the more efficient visibility checking, we propose two additional improvements for our suggested method. Both of them are used for reducing the visited cells in the quad-tree. The experiments for a performance comparison of our algorithm with other well-known algorithms show that our proposed method is superior to others.

An Alternative Study of the Determination of the Threshold for the Generalized Pareto Distribution (일반화 파레토 분포에서 임계치 결정에 대한 대안적 연구)

  • Yoon, Jeong-Yoen;Cho, Jae-Beom;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.931-939
    • /
    • 2011
  • In practice, thresholds are determined by the two subjective assessment methods in a generalized pareto distribution of mean extreme function(MEF-graph) or Hill-graph. To remedy the problem of subjectiveness of these methods, we propose an alternative method to determine the threshold based on the robust statistics. We compared the MEF-graph, Hill-graph and our method through VaRs on the Korean stock market data from January 5, 1987 to August 3, 2009. As a result, the VaR based on the proposed method is not much different from the existing methods, and the standard deviation of VaR for our method was the smallest. The results show that our method can be a promising alternative to determine thresholds of the generalized pareto distributions.