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RADIO NUMBER OF TRANSFORMATION GRAPHS OF A

PATH

S. YOGALAKSHMI, B. SOORYANARAYANA∗, RAMYA

Abstract. A radio labeling of a graph G is a function f : V (G) →
{1, 2, . . . , k} with the property that | f(u)− f(v) |≥ 1 + diam(G)− d(u, v)
for every pair of vertices u, v ∈ V (G), where diam(G) and d(u, v) are diam-

eter and distance between u and v in the graph G respectively. The radio
number of a graph G, denoted by rn(G), is the smallest integer k such that
G admits a radio labeling. In this paper, we completely determine radio
number of all transformation graphs of a path.
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1. Introduction

All graphs in this paper are finite, simple, connected, and undirected. The
length of a shortest path between two vertices u and v in a graph G is called
the distance between u and v and is denoted by dG(u, v) or simply d(u, v). The
maximum of distance between any two vertices in G is called the diameter of G
and is denoted by diam(G).

A labeling of a connected graph G is an injection f : V (G) → Z+, while a
radio labeling is a labeling with an additional condition that |f(u) − f(v)| ≥
1 + diam(G)− d(u, v) for every pair of vertices u, v ∈ V (G). The radio number
rn(f) of a radio labeling f of G is the maximum label assigned to a vertex of G.
The radio number rn(G) of G is min{rn(f)} over all radio labelings f of G. A
radio labeling f of G is a minimal radio labeling of G if rn(f) = rn(G).

Radio labeling is motivated by the channel assignment problem introduced
by W.K. Hale et al [8] in 1980. The radio labeling of a graph is most useful in
FM radio channel restrictions to overcome from the effect of noise. This problem
turns out to find the minimum of maximum frequencies of all the radio stations
considered under the network.
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The notion of radio labeling was introduced by G. Chartrand, David Erwin,
Ping Zhang, and F. Harary in [5]. Since the introduction of radio labeling, several
authors investigated the radio number of various networks [17, 9, 11, 6, 10, 12].

In 2005, Daphne Der-Fen Liu and Xuding Zhu [11] completely determined
the radio numbers for paths and cycles. The results of D. D. F. Liu general-
izes the radio number for paths obtained in [11]. Further D.D.F. Liu and M.
Xie obtained radio labeling of square of paths in [10]. The results of [10] is
now completely generalised for any kth power of a path by P. Devadasa Rao,
B. Sooryanarayana, and Chandru Hegde in [3, 7] for any k ∈ Z+. In 2013,
S.K.Vaidya and D.D.Bantva [13] determined the radio number of total graph of
a path. The total graph is a particular case of transformation graph as well as
square of a path [11]. In this paper, we completely determine the radio number
of all transformation graphs of paths.

In 2001, Wu and Meng [14] introduced some new graphical transformations
which generalize the concept of total graph. In 2005, a particular case when
xyz = −++ was studied by Baoyindureng Wu, Li Zhang, and Zhao Zhang [15]
and in the year 2008, the transformation graph G−+− studied by Lan Xu and
Baoyindureng Wu[16]. The transformation graph Gxyz is defined as follows[16].

2. Main results

Let G = (V,E) be a finite and simple graph and α, β be two elements of
V (G) ∪ E(G). Then associativity of α and β is taken as + if they are adjacent
or incident in G, otherwise −. Let xyz be a 3-permutation of the set {+,−}.
The pair α and β is said to correspond to x or y or z of xyz if α and β are both
in V (G) or both are in E(G), or one is in V (G) and the other is in E(G). The
transformation graph Gxyz of G is the graph whose vertex set is V (G) ∪ E(G)
two of its vertices α and β adjacent if and only if their associativity in G is
consistent with the corresponding element of xyz.

There are eight transformation graphs of G corresponding to eight distinct 3-
permutations of {+,−}. In particular, G+++ is exactly the total graph T (G) of
G and G−−− is the complement of T (G). The other six graphs G++− and G−−+;
G+−+ and G−+−; and G−++ and G+−− forms three pairs of complementary
graphs.

It follows immediately by the definition of a radio labeling that rn(G) ≥
|V (G)| for every graph G.

We recall the following results for immediate reference;

Theorem 2.1 ([11]). For any integer n ≥ 4,

rn(Pn) =

{
2k2 + 3, if n = 2k + 1
2k(k − 1) + 2, if n = 2k

Theorem 2.2 ([4]). For any n ∈ Z+,

rn(Pn) ≤
{

2k2 + k + 1, if n = 2k + 1
2(k2 − k) + 2, if n = 2k
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Moreover, the bound is sharp when n ≤ 5.

Theorem 2.3 ([4]). Let Cn be the n-vertex cycle, n ≥ 3. Then

rn(Cn) =

{
n−2
2 ϕ(n) + 2, if n ≡ 0, 2(mod 4)

n−1
2 ϕ(n) + 1, if n ≡ 1, 3(mod 4)

where ϕ(n) =

{
k + 1, if n = 4k + 1
k + 2, if n = k + r for some r = 0, 2, 3

Theorem 2.4 ([10]). Let P 2
n be a square path on n vertices and let k = ⌊n

2 ⌋.
Then

rn(P 2
n) =

{
k2 + 2, if n ≡ 1(mod 4), and n ≥ 9
k2 + 1, otherwise

In the next section of this paper, we completely determine the radio number
of all the transformation graphs except the total graph which is covered in the
Theorem 2.4. Our main results in the next sections are:

Theorem 2.5. For any integer n ≥ 2, rn(P+−+
n ) =

 3n− 3, if n = 2, 3
3n, if 4 ≤ n ≤ 6
3n− 2, if n ≥ 7

Theorem 2.6. For any integer n ≥ 2, rn(P−−+
n ) =

{
2n, if n = 2
2n− 1, if n ≥ 3

Theorem 2.7. For any integer n ≥ 3, rn(P++−
n ) = 2n− 1.

Theorem 2.8. For any integer n ≥ 2, rn(P−++
n ) =


2n, if n = 2
2n− 1, if n = 3, 4
3n+ 1, if n = 5, 6
3n, if n = 7
3n− 1, if n ≥ 8

Theorem 2.9. For any integer n ≥ 3, rn(P+−−
n ) =

{
4n− 1, if n = 3
2n− 1, if n ≥ 4

Theorem 2.10. For any integer n ≥ 4, rn(P−+−
n ) =

 3n+ 1, if n = 4
2n, if n = 5
2n− 1, if n ≥ 6

Theorem 2.11. For any integer n ≥ 4, rn(P−−−
n ) =

{
3n, if n = 4
2n− 1, if n ≥ 5

Remark 2.1. For those values of n, not indicated in the above theorems, the
graph G is disconnected or trivial.

Throughout this paper, let v0, v1, v2, . . . , vn−1 denote the vertices of the path
Pn with the edges ei = vi−1vi for each i, 1 ≤ i ≤ n− 1.

For any real number x, ⌈x⌉ denotes the smallest integer greater than or equal
to x and ⌊x⌋ denotes the greatest integer less than or equal to x.
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3. Diameter and Lower bounds

For each of main theorems stated in the previous section, we now establish
the lower bounds for their radio number.

3.1. For xyz = +−+.

Lemma 3.1. For any integer n ≥ 2,

diam(P xyz
n ) =

{
n− 1, if n = 2, 3
3, if n ≥ 4

Proof. Let G = P+−+
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| = 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| > 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j = i− 1 or j = i.

Now the cases n = 2 and n = 3 are obvious. Consider n ≥ 4 and let u and
v be any vertices of G. If u = vi and v = vj (without loss of generality, we
take i ≤ j), then dG(vi, vj) = 1 if |i − j| = 1 (since vi and vj are adjacent
in this case), dG(vi, vj) = 2 if |i − j| = 2 (since vi − vi+1 − vi+2 = vj is a
shortest path), and dG(vi, vj) = 3 otherwise (since vi − ei+1 − ej − vj is a
shortest path), so dG(vi, vj) ≤ 3. Similarly, if u = ei (or u = vi) and v = ej
with i ≤ j, then we observe that dG(ei, ej) ≤ 2 and dG(vi, ej) ≤ 2. Thus
diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 3. �

Lemma 3.2. For any integer n ≥ 2, rn(P xyz
n ) ≥


3, if n = 2
6, if n = 3
3n, if n = 4, 5, 6
3n− 2, if n ≥ 7

Proof. Let G = P+−+
n and f be any radio labeling of G. We first prove the

lemma for the case n ≥ 7. In this case, as dG(ei, ej) ≤ 2 and diam(G) = 3,
|f(ei) − f(ej)| ≥ 2 (since f can assign two consecutive integers only for the
diametrically opposite vertices). But then as G has n − 1 vertices that are
the edges of Pn, to label n − 1 vertices e1, e2, . . . , en−1, we require at least
(n−1)+(n−2) integers. Further as d(ei, vj) ≤ 2, f cannot assign two consecutive
integers for a vertex and an edge of Pn in G. So, f should leave at least one
integer at this stage. Thus to label n vertices and n − 1 edges of Pn in G,
f requires at least (n) + (1) + ((n − 1) + (n − 2)) = 3n − 2 integers. Hence
rn(P+−+

n ) = max{f(v) : v ∈ V (G)} ≥ 3n − 2 for n ≥ 7. However, to label n
vertices of Pn in G we require more than n integers whenever 2 < n ≤ 6. If
n = 2, then the result follows immediately as rn(G) ≥ |V (G)| = 3. When n = 3,
the vertex v1 is adjacent to every other vertex u in G and hence |f(u)−f(v2)| ≥
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2. Therefore, f should leave at least one integer while labeling v1 and hence
rn(G) ≥ |V (G)|+ 1 = 5 + 1 = 6.

Let us relabel the vertices of G as x1, x2, x3, . . . , xn such that f(xi) < f(xi+1)
for each i, 1 ≤ i ≤ n. Now in the case n = 4, for at most one i, d(xi, xi+1) =
diam(G) and hence f(xi+1) − f(xi) ≥ 2 except for one i ≤ 7. Therefore,
f(x7) = [f(x7) − f(x6)] + [f(x6) − f(x5)] + · · · + [f(x2) − f(x1)] + f(x1) ≥
2 × 5 + 1 + f(x1) = 2 × 5 + 1 + 1 = 12. Similarly, for the cases n = 5 and
n = 6, there are at most 2 and 3 possible values for i, respectively, such that
d(xi, xi+1) = diam(G). Hence in these cases, respectively, f requires at least
2× 6 + 1× 2 + 1 = 15 and 2× 7 + 1× 3 + 1 = 18 integers. �

3.2. For xyz = −−+.

Lemma 3.3. For any integer n ≥ 2, diam(P xyz
n ) = 2.

Proof. Let G = P−−+
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| > 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| > 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j = i− 1 or j = i.

Let u and v be any vertices of G. If u = vi and v = vj (without loss of
generality, we take i ≤ j), then dG(vi, vj) = 1 if |i− j| > 1 (since vi and vj are
adjacent in this case), and dG(vi, vj) = 2 if |i− j| = 1 (since vi − ei+1 − vj is a
shortest path). Hence dG(vi, vj) ≤ 2. Similarly, we observe that dG(ei, ej) ≤ 2
and dG(vi, ej) ≤ 2. Thus diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 2. �

Lemma 3.4. For any positive integer n ≥ 4, rn(P xyz
n ) ≥ 2n− 1.

Proof. A direct consequence of rn(G) ≥ |V (G)|. �

3.3. For xyz = ++−.

Lemma 3.5. For any integer n ≥ 3, diam(P xyz
n ) = 2.

Proof. Let G = P++−
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| = 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| = 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j ̸= i− 1 or j ̸= i.

Let u and v be any vertices of G. If u = vi and v = vj (without loss of
generality, we take i ≤ j), then dG(vi, vj) = 1 if |i− j| = 1 (since vi and vj are
adjacent in this case) and dG(vi, vj) = 2 if |i − j| > 1 (since vi − ei+2 − vj is a
shortest path if |i−j| > 3 and vi−vi+1−vj is a shortest path if |i−j| = 2). Hence
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dG(vi, vj) ≤ 2. Similarly, we observe that dG(ei, ej) ≤ 2, and dG(vi, ej) ≤ 2.
Thus diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 2. �
Lemma 3.6. For any integer n ≥ 4, rn(P xyz

n ) ≥ 2n− 1.

Proof. A direct consequence of rn(G) ≥ |V (G)|. �
3.4. For xyz = −++.

Lemma 3.7. For any integer n ≥ 2, diam(P xyz
n ) =

{
2, if n = 2, 3, 4
3, if n ≥ 5

Proof. Let G = P−++
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| > 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| = 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j = i− 1 or j = i.

The result follows immediately for the cases n = 2, n = 3, and n = 4 by
Figure 1.
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Figure 1. The Transformation graphs P−++
n for the cases n = 2, 3, 4.

Consider n ≥ 5 and let u and v be any vertices of G. If u = vi and v = vj
(without loss of generality, we take i ≤ j), then dG(vi, vj) = 1 if |i − j| > 1
(since vi and vj are adjacent in this case) dG(vi, vj) = 2 if |i − j| = 1 (since
vi − ei+1 − vj is a shortest path), so dG(vi, vj) ≤ 2.

If u = ei and v = ej with i ≤ j we observe that dG(ei, ej) = 1 if j = i + 1,
dG(ei, ej) = 2 if j = i + 2 (since ei − ei+1 − ej is a shortest path in this case),
and dG(ei, ej) = 3 if j > i+2 (since ei − vi − vj−1 − ej is a shortest path in this
case). So, dG(ei, ej) ≤ 3.

If u = vi and v = ej , then we observe that dG(vi, ej) = 1 if |i − j| ≤ 1, and
dG(vi, ej) = 2 if |j − i| > 1 (since vi − vj−1 − ej is a shortest path if j > i + 2
and vi − vj − ej is a shortest path if i > j + 2).

Thus diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 3. �

Lemma 3.8. For any integer n ≥ 3, rn(P xyz
n ) ≥

 2n− 1 if n = 3, 4
3n+ 1 if n = 5, 6, 7
3n− 1 if n ≥ 8
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Proof. Let G = P−++
n and f be a radio labeling of G. For n = 3, 4, result

follows by the fact that rn(G) ≥ |V (G)|. Let us relabel the vertices of G as
x1, x2, x3, . . . , xn such that f(xi) < f(xi+1) for each i, 1 ≤ i ≤ n. Now in the
case n = 5, for at most one i, d(xi, xi+1) = diam(G) = 3 (only the possibility
is xi = e1 and xi+1 = e4) and hence f(xi+1) − f(xi) ≥ 2 except for one i ≤ 9.
Therefore, f(x9) = [f(x9)−f(x8)]+[f(x8)−f(x7)]+· · ·+[f(x2)−f(x1)]+f(x1) ≥
2× 7 + 1 + f(x1) = 2× 7 + 1 + 1 = 16.

Similarly, for the case n = 6, for at most two i, d(xi, xi+1) = diam(G) = 3
(the possibilities are (xi, xi+1) = (e1, e4), (e2, e5)) and hence f(xi+1)−f(xi) ≥ 2
except for two i ≤ 11. Therefore, f(x11) = [f(x11)−f(x10)]+ [f(x10)−f(x9)]+
· · ·+ [f(x2)− f(x1)] + f(x1) ≥ 2× 8 + 1× 2 + f(x1) = 2× 8 + 2 + 1 = 19.

And for case n = 7, for at most three i, d(xi, xi+1) = diam(G) = 3 and hence
f(x13) ≥ 2× 9 + 1× 3 + 1 = 22.

We now consider the case n ≥ 8. Since the diameter of G is 3, dG(vi, vj) ≤ 2
and dG(el, vm) ≤ 2, for all possible i, j, l,m, we see that |f(vi)− f(vj)| ≥ 2 and
|f(el) − f(vm)| ≥ 2. Therefore, it follows that no consecutive integers can be
assigned for two distinct vertices or an edge and a vertex of Pn in G and hence
f(x2n−1) > 1× |E(Pn)|+ 2× (|V (Pn)| − 1) + 1 (here the last 1 is the minimum
requirement for labeling a vertex after labeling an edge or vice versa)⇒ rn(G) =
f(x2n−1) > (n− 1) + 2× (n− 1) + 1 = 3n− 2 ⇒ rn(G) ≥ 3n− 1. �

3.5. For xyz = +−−.

Lemma 3.9. For any integer n ≥ 3, diam(P xyz
n ) =

{
4, if n = 3
2, if n ≥ 4

Proof. Let G = P+−−
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| = 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| > 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j ̸= i− 1 or j ̸= i.

When n = 3, the result follows immediately as G ∼= P5. Let n ≥ 4 and let
u and v be any vertices of G. If u = vi and v = vj (without loss of generality,
we take i ≤ j), then dG(vi, vj) = 1 if |i− j| = 1 (since vi and vj are adjacent in
this case), dG(vi, vj) = 2 if |i− j| ≥ 2 (since vi − vi+1 − vj is a shortest path if
|j − i| = 2; vi − ei+2 − vj is a shortest path if |i− j| > 2), so dG(vi, vj) ≤ 2.

If u = ei and v = ej with i ≤ j, then we observe that dG(ei, ej) = 1 if j ̸= i+1
and dG(ei, ej) = 2 if j = i + 1 (since ei − vi+2(mod n) − ej is a shortest path in
this case).

If u = vi and v = ej , then we observe that dG(ei, vj) = 1 if j ̸= i− 1 or j ̸= i
and dG(ei, vj) = 2 if |i − j| ≤ 1 (since ei − ej(mod n) − vi is a shortest path if
j > i+ 1). Thus diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 2. �
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Lemma 3.10. For any integer n ≥ 3, rn(P xyz
n ) ≥

{
4n− 1, if n = 3
2n− 1, if n ≥ 4

Proof. When n = 3, G ∼= P5 and hence the equality by Theorem 2.1. The case
n ≥ 4 is a direct consequence of rn(G) ≥ |V (G)|. �
3.6. For xyz = −+−.

Lemma 3.11. For any integer n ≥ 4, diam(P xyz
n ) =

{
3, if n = 4
2, if n ≥ 5

Proof. Let G = P−+−
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| ≥ 2.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| = 1.

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j ̸= i− 1 or j ̸= i.
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Figure 2. The Transformation graph P−+−
4 .

The case n = 4, follows by Figure 2. When n ≥ 5 , for i ≤ j, vi−ei+3(mod n)−
vj(or vi − vi+3(mod n) − vj), 0 ≤ i, j ≤ n − 1 is a shortest path if j − i = 1
and hence d(vi, vj) = 2 whenever vi and vj are not adjacent in G. Similarly,
ei − ei+1 − ej (or ei − vi+1(mod n) − ej) is a shortest path if |i − j| = 2 (or
|i − j| > 2), hence d(ei, ej) = 2 whenever ei and ej are not adjacent in G.
Finally, ei − vi+2(mod n) − vj is a shortest path if j = i− 1. Hence d(ei, vj) = 2,
whenever ei and vj are non-adjacent in G.

Thus diam(G) = max{dG(u, v) : u, v ∈ V (G)} = 2. �

Lemma 3.12. For any integer n ≥ 4, rn(P xyz
n ) ≥

 3n+ 1, if n = 4
2n, if n = 5
2n− 1, if n ≥ 6

Proof. Let G = P xyz
n and f be a radio labeling of G.

For n = 4, let x1, x2, . . . , x7 be the rearrangement of the vertices of P xyz
4 such

that f(xi) < f(xi+1), 1 ≤ i ≤ 7. We know that, for n = 4, diam(P xyz
4 ) = 3

and there exists only one pair of vertices at distance 3. Let x and y be the two
antipodal vertices in P xyz

4 .
Case 1: If x and y uses consecutive labels, then V − {x} or V − {y} has

exactly four pair of vertices of the form (xi, xi+1) such that d(xi, xi+1) = 2.



Radio number of Transformation graphs of a Path 67

Thus, the sequence x1, x2, . . . , x7 has at least one pair of adjacent vertices of the
form (xi, xi+1). Thus in this case rn(P xyz

n ) ≥ f(xn) =
∑6

i=1[f(xi+1)− f(xi)] +
f(x1) = (1 + 4× 2 + 3) + 1 = 13.

Case 2: If no two vertices receive consecutive labels, then there exist exactly
6 pairs of vertices of the form (xi, xi+1) in the sequence x1, x2, . . . , x7 such that
d(xi, xi+1) = 2. Thus in this case, rn(P xyz

n ) ≥ f(x1) + (6× 2) = 13.
Thus in any case, for n = 4, rn(P xyz

n ) ≥ 13 = 3n+ 1.
For n = 5, diam(G) = 2. Let x1, x2, . . . , x9 be the arrangement of vertices

of P xyz
5 such that f(xi) < f(xi+1), 1 ≤ i ≤ 9. There are at most 7 pairs

of vertices of the form (xi, xi+1) such that d(xi, xi+1) = 2 = diam(G). Thus
rn(P xyz

5 ) ≥ |V | + 1. That is, rn(P xyz
5 ) ≥ 10 = 2n. When n ≥ 6, a direct

consequence of rn(G) ≥ |V (G)|.
�

3.7. For xyz = −−−.

Lemma 3.13. For any integer n ≥ 4, diam(P xyz
n ) =

{
3, if n = 4
2, if n ≥ 5

Proof. Let G = P−−−
n . Then in G,

(i) the vertex vi is adjacent to the vertex vj if and only if
|i− j| > 1.

(ii) the vertex ei is adjacent to the vertex ej if and only if
|i− j| > 1’

(iii) the vertex ei is adjacent to the vertex vj if and only if either
j ̸= i− 1 or j ̸= i.

The case n = 4 is again easy to verify. When n ≥ 5, for i ≤ j, vi−vi+3(mod n)−vj
is a shortest path if |i−j| = 1 and hence d(vi, vj) = 2 whenever vi and vj are not
adjacent in G, Similarly, ei−vi+2(mod n)−ej is a shortest path if |i−j| = 1, hence
d(ei, ej) = 2 whenever ei and ej are not adjacent in G. Finally, ei−ei+3(mod n)−
vj is a shortest path if |i − j| = 1 hence d(ei, vj) = 2, whenever ei and vj are
non-adjacent in G, hence d(ei, vj) = 2. Thus, diam(G) = max{dG(u, v) : u, v ∈
V (G)} = 2. �

Lemma 3.14. For any integer n ≥ 4, rn(P xyz
n ) ≥

{
3n, if n = 4
2n− 1, if n ≥ 5

Proof. Let G = P xyz
n and f be a radio labeling of G. For n = 4, let x1, x2, . . . , x7

be the vertices of P xyz
4 such that f(xi) < f(xi+1), 1 ≤ i ≤ 7. There exists only

one pair of vertices at distance 3 and there exist exactly 5 pairs of vertices
in the sequence x1, x2, . . . , x7 such that d(xi, xi+1) = 2. Thus rn(P xyz

4 ) ≥
f(x1) + 1 + (2 × 5) ≥ 12 = 3n. When n ≥ 5, result follows by the direct
consequence of rn(G) ≥ |V (G)|. �
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4. Upper Bounds and a radio labeling

In this section we actually show the upper limit, established in the previ-
ous section, for each of the transformation graphs is tight by executing a radio
labeling.

4.1. For xyz = +−+.

Lemma 4.1. For any integer n ≥ 2, rn(P xyz
n ) ≤

 3n− 3, if n = 2, 3
3n, if 4 ≤ n ≤ 6
3n− 2, if n ≥ 7

.

Proof. Let G = P+−+
n . When n = 2, the graph G ∼= K3 and hence rn(G) = 3.

The case n = 3, 4 follows respectively by the radio labelings of G shown in the
Figure 3 and Figure 4.

1
v �

2
v �

1
e �

2
e �

��

�� ��

��

3
v �

��

Figure 3. A radio
labeling of P+−+

3 .

��� �� ��

�� �� ��� ��

Figure 4. A radio la-
beling of P+−+

4 .

Now for the case n = 5, 6, define a function f : V (G) → Z+ as, f(vi) =
1+⌈n

2 ⌉i, for 0 ≤ i ≤ 2, f(vj) = f(vj−3)+1, for 3 ≤ j ≤ n−1, and f(e1) = n+4,
f(ej) = f(ej−1)+2, for 2 ≤ j ≤ n−1. Hence, it follows that f is a radio labeling
of G and rn(G) ≤ spanf = n+ 2 + 1 + 2n− 3 = 3n. We now consider the case
n ≥ 7.

Case 1: If n ≡ 0(mod 3), and n ≡ 2(mod 3), then define a function f : V (G) →
Z+ by f(vi) = 1 + n

3 i, for 0 ≤ i ≤ 2; f(vi) = f(vi−3) + 1, for 3 ≤ i ≤ n − 1;
f(e1) = n+ 2, and f(ei) = f(ei−1) + 2, for 2 ≤ i ≤ n− 1.

Case 2: If n ≡ 1(mod 3), then define a function f : V (G) → Z+ by f(vi) =
1 + n

3 i, for 0 ≤ i ≤ 1; f(vi) = 3 + n
3 , for i = 2, f(vi) = f(vi−3) + 1, for

3 ≤ i ≤ n− 1; f(e1) = n+ 2, and f(ei) = f(ei−1) + 2, for 2 ≤ i ≤ n− 1.
Clearly f is a radio labeling. In fact, (i) |f(vi) − f(vj)| = 1 ⇔ j = i +

3(mod n) ⇔ d(vi, vj) ≥ 3 for all i, 1 ≤ i ≤ n, (ii) |f(u) − f(v)| = 2 ⇔ u = ei
and v = ei+1, or u and v are non-incident pairs in G ⇔ d(u, v) = 2, and, (iii)
|f(u) − f(v)| ≥ 3 ⇔ u and v are adjacent vertices or, non-incident edges or,
incident pair of vertex and edges ⇔ d(u, v) = 1. Hence, as diam(G) = 3 (by
Lemma 3.1) it follows that f is a radio labeling of G and hence rn(G) ≤ span
f = f(en−1) = f(ej−1)+2 = · · · = f(e1)+2×(n−2) = n+2+2n−4 = 3n−2. �

Lemma 3.2 and Lemma 4.1 together prove the Theorem 2.5.
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4.2. For xyz = −−+.

Lemma 4.2. For any integer n ≥ 2, rn(P xyz
n ) ≤

{
2n, if n = 2
2n− 1, if n ≥ 3

Proof. Let G = P−−+
n . When n = 2, the graph G ∼= P3 and hence it follows

from the Theorem 2.2. Consider n ≥ 3, define a function f : V (G) → Z+ by
f(vi) = i+ 1, for 0 ≤ i ≤ n− 1 and f(ei) = n+ i, 1 ≤ i ≤ n− 1. The function
f is a radio labeling for n ≥ 3 because by Lemma 3.3 diam(G) + 1 = 3 and

(1) |f(vi)− f(vj)|+ d(vi, vj) =

{
|i− j|+ 2 = 3, if vivj ̸∈ E(G)
|i− j|+ 1 ≥ 3, if vivj ∈ E(G)

(2) |f(ei)− f(ej)| + d(ei, ej) =

{
|i− j|+ 2 = 3, if eiej ̸∈ E(G)
|i− j|+ 1 ≥ 3, if eiej ∈ E(G)

(3) |f(ei) − f(vj)| = 1 ⇔ i = 1 and j = n − 1 (since f(ei) > f(vj)) and in
this case d(ei, vj) = 2. So, |f(ei)− f(vj)|+ d(ei, vj) ≥ 3.

Thus rn(G) ≤ span f = f(en−1) = 2n− 1. �
Theorem 2.2, Theorem 2.3, Lemma 3.4 and Lemma 4.2 together prove the

Theorem 2.6.

4.3. For xyz = ++−.

Lemma 4.3. For any integer n ≥ 3, rn(P xyz
n ) ≤ 2n− 1.

Proof. Let G = P++−
n . When n = 3, the graph G ∼= C5 and hence the result

follows by Theorem 2.3. When n = 4, the result follows by the radio labeling
given in Figure 5.

�� � ��

�� �� �� ��

Figure 5. A radio labeling of P++−
4 .

For n ≥ 5, define a function f : V (G) → Z+ as f(v0) = 1, f(v1) = ⌈n
2 ⌉ + 1;

f(vi) = f(vi−2) + 1, 2 ≤ i ≤ n − 1; and f(en−i) = f(en−i−2) + 1, for all

i, 3 ≤ i ≤ n−1, with f(en−1) = n+1 and f(en−2) =

{
2n− ⌈n

3 ⌉, if n is even
n+ ⌈n

2 ⌉, if n is odd
The function f is a radio labeling. In fact, in this case, diam(G) + 1 =

2 + 1 = 3, |f(u) − f(v)| + d(u, v) ≥ 3 if u and v are adjacent pairs in Pn,
|f(u) − f(v)| + d(u, v) ≥ 1 if u and v are non-adjacent pairs in Pn, and, as
f(ei) > f(vj), |f(ei) − f(vj)| = 1 ⇔ j = n − 1 for n even, and j = n − 2 for n
odd ⇔ d(ei, vj) = 2. Thus rn(G) ≤ span f = 2n− 1. �

Theorem 2.3, Lemma 3.6 and Lemma 4.3 together prove the Theorem 2.7.
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4.4. For xyz = −++.

Lemma 4.4. For any integer n ≥ 2, rn(P xyz
n ) ≤


2n, if n = 2
2n− 1, if n = 3, 4
3n+ 1, if n = 5, 6
3n, if n = 7
3n− 1, if n ≥ 8

Proof. Let G = P−++
n . When n = 2, the graph G ∼= P3 and hence the result

follows by the Theorem 2.2. When n = 3, 4, and 5, the result follows respectively
by the radio labelings in Figure 6, Figure 7, and Figure 8.

�� ��

�� �� ��

Figure 6. A radio
labeling of P−++

3 .

��

��
����

��

�� ��

Figure 7. A radio la-
beling of P−++

4 .

�� �� ��� ��

�� ��� �����
���

Figure 8. A radio labeling of P−++
5 .

When n = 6, 7, 8, it is easy to verify that the function f : V (G) → Z+

defined by f(v0) = 9; f(vi) = f(vi−1) + 2, for all i = 1, 2, . . . , n− 1; and f(e1) =
3, f(e2) = 6, f(e3) = 1, f(ej) = f(ej−3) + 1, for all i = 4, 5, . . . , n− 1.

When n ≥ 9, define f(ei) = i+2
3 if i ≡ 1(mod 3), f(ei) = ⌈n+2

3 ⌉ + ( i−2
3 ) if

i ≡ 2(mod 3), f(ei) = ⌈ 2n+1
3 ⌉+( i−3

3 ) if i ≡ 0(mod 3), and f(v0) = n+1, f(vi) =
f(vi−1) + 2, for 1 ≤ i ≤ n− 1. The function f is a radio labeling. In fact,

(1) |f(vi)− f(vj)|+ d(vi, vj) ≥ 4, if vivj are adjacent or non-adjacent in G.
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(2) |f(ei)− f(ej)|+ d(ei, ej) ≥ 4, if eiej are adjacent or non-adjacent in G.
(3) f(vj) > f(ei), it follows that |f(vj) − f(ei)| = 2, only if i = n − 3 and

j = 0. So, |f(vj)− f(ei)|+ d(vj , ei) ≥ 4 = 1 + diam(G).

Thus rn(G) ≤ span f = f(vn−1) = 3n− 1. �

Theorem 2.2, Lemma 3.8 and Lemma 4.4 together prove the Theorem 2.8.

4.5. For xyz = +−−.

Lemma 4.5. For any integer n ≥ 3, rn(P xyz
n ) ≤

{
4n− 1, if n = 3
2n− 1, if n ≥ 4

.

Proof. Let G = P+−−
n . When n = 3, 4, the result follows by the labeling in

Figure 9 and Figure 10.

����

��� ����

Figure 9. A radio
labeling of P+−−

3 .

�� � ��

�� �� �� ��

Figure 10. A radio la-
beling of P+−−

4 .

For n ≥ 5, define a function f : V (G) → Z+ as f(en−1) = n + 1; f(ei) =
f(ei+1) + 1, n − 2 ≤ i ≤ 1; f(v0) = 1; f(v1) = 1 + ⌈n

2 ⌉, f(vi) = f(vi−2) + 1,
2 ≤ i ≤ n− 1. The function f is a radio labeling. In fact,

(1) |f(vi)− f(vj)|+ d(vi, vj) ≥ 3 = 1 + diam(G),
(2) |f(ei)− f(ej)|+ d(ei, ej) ≥ 3 = 1 + diam(G),
(3) f(ei) > f(vj), it follows that |f(ei)− f(vj)| = 1, only if i = j + 1.

Thus rn(G) ≤ span f = f(e1) = 2n− 1. �

Lemma 3.10 and Lemma 4.5 together prove the Theorem 2.9.

4.6. For xyz = −+−.

Lemma 4.6. For any integer n ≥ 4, rn(P xyz
n ) ≤

 3n+ 1, if n = 4
2n, if n = 5
2n− 1, if n ≥ 6

Proof. Let G = P−+−
n . When n = 4, 5, the result follows by the labeling in

Figure 11 and Figure 12.
When n ≥ 6, define a function f : V (G) → Z+ as f(vi) = i+1, 0 ≤ i ≤ n− 1

and f(en−1) = n + 1, f(en−2) = f(en−1) + ⌊n
2 ⌋, f(ei) = f(ei+2) + 1, n − 3 ≤

i ≤ 1. The function f is a radio labeling for n ≥ 6 because, by Lemma 3.11,
diam(G) + 1 = 3 and,
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�� �����

���������

Figure 11. A radio
labeling of P−+−

4 .

��

��

�� �� ��

�� ���	� 
�

Figure 12. A radio la-
beling of P−+−

5 .

(1) |f(vi)− f(vj)|+ d(vi, vj) =

{
|i− j|+ 2 = 3, if vivj ̸∈ E(G)
|i− j|+ 1 ≥ 3, if vivj ∈ E(G)

(2) |f(ei)− f(ej)|+ d(ei, ej) ≥
{

2 + 1 = 3, if eiej ̸∈ E(G)
1 + 2 = 3, if eiej ∈ E(G)

(3) |f(ei)− f(vj)| = 1, if i = j = n− 1 and in this case d(ei, vj) = 2.
So, |f(ei)− f(vj)|+ d(ei, vj) ≥ 3.

Thus rn(G) ≤ span f =

{
f(e1) = 2n− 1, if n is odd
f(e2) = 2n− 1, if n is even

�

Lemma 3.12 and Lemma 4.6 together prove the Theorem 2.10.

4.7. For xyz = −−−.

Lemma 4.7. For any integer n ≥ 4, rn(P xyz
n ) ≤

{
3n, if n = 4
2n− 1, if n ≥ 5

.

Proof. Let G = P−−−
n . For n = 4, the result follows by the labeling in Figure

13.

���

��

��

���

��

�� ��

Figure 13. The graph P−−−
4 .

For n ≥ 5, define a function f : V (G) → Z+ as f(vi) = i+1, for 0 ≤ i ≤ n−1
and f(en−1) = n+ 1, f(ei) = f(ei+1) + 1 for n− 2 ≤ i ≤ 1. The function f is a
radio labeling for n ≥ 5 because, by Lemma 3.13, diam(G) + 1 = 3 and

(1) |f(vi)− f(vj)|+ d(vi, vj) =

{
|i− j|+ 2 = 3, if vivj ̸∈ E(G)
|i− j|+ 1 ≥ 3, if vivj ∈ E(G)

,
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(2) |f(ei)− f(ej)| + d(ei, ej) =

{
|i− j|+ 2 = 3, if eiej ̸∈ E(G)
|i− j|+ 1 ≥ 3, if eiej ∈ E(G)

,

(3) |f(ei) − f(vj)| = 1 ⇔ i = j and j = n − 1 (since f(ei) > f(vj)) and in
this case d(ei, vj) = 2. So, |f(ei)− f(vj)|+ d(ei, vj) ≥ 3.

Thus rn(G) ≤ spanf = f(e1) = 2n− 1. �

Lemma 3.14 and Lemma 4.7 together prove the Theorem 2.11.
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