• Title/Summary/Keyword: Graph embedding

Search Result 80, Processing Time 0.025 seconds

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

  • Seo, Minji;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1407-1423
    • /
    • 2020
  • A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

ENUMERATING EMBEDDINGS OF A DARTBOARD GRAPH INTO SURFACES

  • Kim, Jin-Hwan;Kim, Hye-Kyung;Lim, Dae-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1095-1104
    • /
    • 1996
  • We enumerate the congruence classes of 2-cell embeddings of a dartboard graph into surfaces with respect to a group consisting of graph automorphisms of a dartboard graph.

  • PDF

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

The Research of Q-edge Labeling on Binomial Trees related to the Graph Embedding (그래프 임베딩과 관련된 이항 트리에서의 Q-에지 번호매김에 관한 연구)

  • Kim Yong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • In this paper, we propose the Q-edge labeling method related to the graph embedding problem in binomial trees. This result is able to design a new reliable interconnection networks with maximum connectivity using Q-edge labels as jump sequence of circulant graph. The circulant graph is a generalization of Harary graph which is a solution of the optimal problem to design a maximum connectivity graph consists of n vertices End e edgies. And this topology has optimal broadcasting because of having binomial trees as spanning tree.

Performance Improvement of Context-Sensitive Spelling Error Correction Techniques using Knowledge Graph Embedding of Korean WordNet (alias. KorLex) (한국어 어휘 의미망(alias. KorLex)의 지식 그래프 임베딩을 이용한 문맥의존 철자오류 교정 기법의 성능 향상)

  • Lee, Jung-Hun;Cho, Sanghyun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.493-501
    • /
    • 2022
  • This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.

Analysis of Commute Time Embedding Based on Spectral Graph (스펙트럴 그래프 기반 Commute Time 임베딩 특성 분석)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.34-42
    • /
    • 2014
  • In this paper an embedding algorithm based on commute time is implemented by organizing patches according to the graph-based metric, and its performance is analyzed by comparing with the results of principal component analysis embedding. It is usual that the dimensionality reduction be done within some acceptable approximation error. However this paper shows the proposed manifold embedding method generates the intrinsic geometry corresponding to the signal despite severe approximation error, so that it can be applied to the areas such as pattern classification or machine learning.

Embedding algorithm among star graph and pancake graph, bubblesort graph (스타 그래프와 팬케익, 버블정렬 그래프 사이의 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.5
    • /
    • pp.91-102
    • /
    • 2010
  • Star graph is a well-known interconnection network to further improve the network cost of Hypercube and has good properties such as node symmetry, maximal fault tolerance and strongly hierarchical property. In this study, we will suggest embedding scheme among star graph and pancake graph, bubblesort graph, which are variations of star graph. We will show that bubblesort graph can be embedded into pancake and star graph with dilation 3, expansion 1, respectively and pancake graph can be embedded into bubblesort graph with dilation cost O($n^2$). Additionally, we will show that star graph can be embedded into pancake graph with dilation 4, expansion 1. Also, with dilation cost O(n) we will prove that star graph can be embedded into bubblesort graph and pancake graph can be embedded into star graph.

  • PDF

CELLULAR EMBEDDINGS OF LINE GRAPHS AND LIFTS

  • Kim, Jin-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.175-184
    • /
    • 2002
  • A Cellular embedding of a graph G into an orientable surface S can be considered as a cellular decomposition of S into 0-cells, 1-cells and 2-cells and vise versa, in which 0-cells and 1-cells form a graph G and this decomposition of S is called a map in S with underlying graph G. For a map M with underlying graph G, we define a natural rotation on the line graph of the graph G and we introduce the line map for M. we find that genus of the supporting surface of the line map for a map and we give a characterization for the line map to be embedded in the sphere. Moreover we show that the line map for any life of a map M is map-isomorphic to a lift of the line map for M.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.