• 제목/요약/키워드: Graph Embedding Network

검색결과 31건 처리시간 0.037초

인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선 (Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector)

  • 조새롬;김한준
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.67-80
    • /
    • 2021
  • 그래프 표현 학습을 위한 노드 임베딩 기법은 그래프 마이닝에서 양질의 결과를 얻는 데 중요한 역할을 한다. 지금까지 대표적인 노드 임베딩 기법은 동종 그래프를 대상으로 연구되었기에, 간선 별로 고유한 의미를 갖는 지식 그래프를 학습하는 데 어려움이 있었다. 이러한 문제를 해결하고자, 기존 Triple2Vec 기법은 지식 그래프의 노드 쌍과 간선을 하나의 노드로 갖는 트리플 그래프를 학습하여 임베딩 모델을 구축한다. 하지만 Triple2Vec 임베딩 모델은 트리플 노드 간 관련성을 단순한 척도로 산정하기 때문에 성능을 높이는데 한계를 가진다. 이에 본 논문은 Triple2Vec 임베딩 모델을 개선하기 위한 그래프 합성곱 신경망 기반의 특징 추출 기법을 제안한다. 제안 기법은 트리플 그래프의 인접성 벡터(Neighborliness Vector)를 추출하여 트리플 그래프에 대해 노드 별로 이웃한 노드 간 관계성을 학습한다. 본 논문은 DBLP, DBpedia, IMDB 데이터셋을 활용한 카테고리 분류 실험을 통해, 제안 기법을 적용한 임베딩 모델이 기존 Triple2Vec 모델보다 우수함을 입증한다.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

하이퍼큐브와 스타 그래프 종류 사이의 임베딩 알고리즘 (Embedding algorithms among hypercube and star graph variants)

  • 김종석;이형옥
    • 컴퓨터교육학회논문지
    • /
    • 제17권2호
    • /
    • pp.115-124
    • /
    • 2014
  • 하이퍼큐브와 스타 그래프는 상호연결망으로 널리 알려져 있다. 상호연결망의 임베딩은 임의의 연결망 G를 다른 연결망 H에 사상하는 것이다. 상호연결망 G가 H에 적은 비용으로 임베딩 가능하다는 것은 연결망 G에서 개발된 알고리즘들을 연결망 H에서 효율적으로 이용할 수 있는 장점이 있다. 본 논문에서는 HCN과 HON 사이의 임베딩과 스타(star)그래프와 하프팬케익그래프 사이의 임베딩을 분석한다. 연구 결과로 HCN(n,n)은 HON($C_{n+1},C_{n+1}$)에 연장율 3에 임베딩 가능하고, HON($C_d,C_d$)를 HCN(2d-1,2d-1)에 임베딩 비용은 O(d)임을 보인다. 또한 스타그래프는 하프팬케익그래프에 연장율 11, 확장율 1에 임베딩 가능하고, 평균 연장율은 8이다. 본 연구 결과는 HCN 연결망과 스타그래프에서 이미 개발된 여러 가지 알고리즘을 HON 연결망과 하프팬케익그래프에서 효율적으로 이용할 수 있음을 의미한다.

  • PDF

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

Knowledge Recommendation Based on Dual Channel Hypergraph Convolution

  • Yue Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2903-2923
    • /
    • 2023
  • Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.

한국어 어휘 의미망(alias. KorLex)의 지식 그래프 임베딩을 이용한 문맥의존 철자오류 교정 기법의 성능 향상 (Performance Improvement of Context-Sensitive Spelling Error Correction Techniques using Knowledge Graph Embedding of Korean WordNet (alias. KorLex))

  • 이정훈;조상현;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제25권3호
    • /
    • pp.493-501
    • /
    • 2022
  • This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.

스타 그래프와 팬케익, 버블정렬 그래프 사이의 임베딩 알고리즘 (Embedding algorithm among star graph and pancake graph, bubblesort graph)

  • 김종석;이형옥;김성원
    • 컴퓨터교육학회논문지
    • /
    • 제13권5호
    • /
    • pp.91-102
    • /
    • 2010
  • 스타 그래프는 노드 대칭성, 최대 고장 허용도, 계층적 분할 성질을 갖고, 하이퍼큐브보다 망 비용이 개선된 널리 알려진 상호 연결망이다. 본 연구에서는 스타 그래프와 그의 변형된 그래프들 상호 간의 임베딩 방법을 제안한다. 버블정렬 그래프가 팬케익 그래프와 스타 그래프에 각각 연장율 3, 확장율 1로 임베딩 가능함을 보이고, 팬케익 그래프가 버블정렬그래프에 임베딩 하는 연장율 비용이 O($n^2$)임을 보인다. 그리고 스타 그래프가 팬케익 그래프에 연장율 4, 확장율 1로 임베딩 가능함을 보인다. 또한 스타그래프를 버블정렬 그래프에, 팬케익 그래프를 스타 그래프에 임베딩 하는 연장율 비용이 각각 O(n)임을 보인다.

  • PDF

매크로-스타 그래프와 행렬 스타 그래프 사이의 임베딩 (Embedding between a Macro-Star Graph and a Matrix Star Graph)

  • 이형옥
    • 한국정보처리학회논문지
    • /
    • 제6권3호
    • /
    • pp.571-579
    • /
    • 1999
  • A Macro-Star graph which has a star graph as a basic module has node symmetry, maximum fault tolerance, and hierarchical decomposition property. And, it is an interconnection network which improves a network cost against a star graph. A matrix star graph also has such good properties of a Macro-Star graph and is an interconnection network which has a lower network cost than a Maco-Star graph. In this paper, we propose a method to embed between a Macro-Star graph and a matrix star graph. We show that a Macro-Star graph MS(k, n) can be embedded into a matrix star graph MS\ulcorner with dilation 2. In addition, we show that a matrix star graph MS\ulcorner can be embedded into a Macro-Star graph MS(k,n+1) with dilation 4 and average dilation 3 or less as well. This result means that several algorithms developed in a star graph can be simulated in a matrix star graph with constant cost.

  • PDF

KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델 (KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph)

  • 이재윤;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.91-100
    • /
    • 2020
  • 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 새로운 영상 기반 상식 추론(VCR) 문제들은 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등과 같이 추가적인 심층 상식 추론을 요구한다. 본 논문에서는 영상 기반 상식 추론 문제들을 위한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. KG_VCR 모델은 입력 데이터(영상, 자연어 질문, 응답 리스트 등)에서 추출하는 사물들 간의 관계와 맥락 정보들을 이용할 뿐만 아니라, 외부 지식 베이스인 ConceptNet으로부터 구해내는 상식 임베딩을 함께 활용한다. 특히 제안 모델은 ConceptNet으로부터 검색해낸 연관 지식 그래프를 효과적으로 임베딩하기 위해 그래프 합성곱 신경망(GCN) 모듈을 채용한다. VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서는 제안 모델인 KG_VCR이 기존의 VQA 최고 모델과 R2C VCR 모델보다 더 높은 성능을 보인다는 것을 입증한다.

Multimodal Context Embedding for Scene Graph Generation

  • Jung, Gayoung;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1250-1260
    • /
    • 2020
  • This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.