• Title/Summary/Keyword: Granulocyte

Search Result 309, Processing Time 0.034 seconds

Is There Additive Therapeutic Effect When GCSF Combined with Adipose-Derived Stem Cell in a Rat Model of Acute Spinal Cord Injury?

  • Min, Joongkee;Kim, Jeong Hoon;Choi, Kyoung Hyo;Yoon, Hyung Ho;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.404-416
    • /
    • 2017
  • Objective : Functional and neural tissue recovery has been reported in many animal studies conducted with stem cells. However, the combined effect of cytokines and stem cells has not yet been adequately researched. Here, we analyzed the additive effects of granulocyte colony-stimulating factor (GCSF) on adipose-derived stem cells (ADSCs) infusion in the treatment of acute spinal cord injury (SCI) in rats. Methods : Four days after intrathecal infusion tubes implantation in Sprague-Dawley rats, SCI was induced with an infinite horizon impactor. In the Sham group (n=5), phosphate-buffered saline was injected 3, 7, and 14 days after SCI. GCSF, ADSCs, and ADSCs with GCSF were injected at the same time in the GCSF (n=8), ADSC (n=8), and ADSC+GCSF groups (n=7), respectively. Results : The ADSC and ADSC+GCSF groups, but not the GCSF group, showed significantly higher Basso-Beattie-Bresnahan scores than the Sham group during 8 weeks (p<0.01), but no significant difference between the ADSC and ADSC+GCSF groups. In the ladder rung test, all four groups were significantly different from each other, with the ADSC+GCSF group showing the best improvement (p<0.01). On immunofluorescent staining (GAP43, MAP2), western blotting (GAP43), and reverse transcription polymerase chain reaction (GAP43, nerve growth factor), the ADSC and ADSC+GCSF groups showed higher levels than the Sham and GCSF groups. Conclusion : Our analyses suggest that the combination of GCSF and ADSCs infusions in acute SCI in the rat does not have a significant additive effect. Hence, when combination agents for SCI stem cell therapy are considered, molecules other than GCSF, or modifications to the methodology, should be investigated.

Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) could accelerate burn wound healing in hamster skin

  • Heo, Si-Hyun;Han, Kyu-Boem;Lee, Young-Jun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Han, Man-Deuk;Shin, Kil-Sang;Kim, Wan-Jong
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • Burns are one of the most devastating forms of trauma and wound healing is a complex and multicellular process, which is executed and regulated by signaling networks involving numerous growth factors, cytokines, and chemokines. Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was specifically produced from rice cell culture through use of a recombinant technique in our laboratory. The effect of rhGM-CSF on promotion of deep second-degree burn wound healing on the back skin of a hamster model was evaluated through a randomized and double-blind trial. As macroscopic results, hamster skins of the experimental groups showed earlier recovery by new epidermis than the control groups. Immunohistochemical reactions of proliferating cell nuclear antigen and transforming growth factor-b1, which are indicators of cell proliferation, were more active in the experimental group, compared with the control group. On electron microscopy, basal cells in the epidermis of the experimental group showed oval nuclei, prominent nucleoli, numerous mitochondria and abundant free ribosomes. In addition, fibroblasts contained well-developed rough endoplasmic reticulum with dilated cisternae. Bundles of collagen fibrils filled the extracellular spaces. Particularly, ultrastructural features indicating active metabolism for regeneration of injured skin at 15 days after burn injury, including abundant euchromatin, plentiful free ribosomes, and numerous mitochondria, were observed. These findings suggest that use of rhGM-CSF could result in accelerated deep second-degree burn wound healing in animal models.

Effects of Gardeniae Fructus on Cytokines in Mouse Macrophage (치자(梔子)가 대식세포의 Cytokine에 미치는 영향)

  • Cha, Ji-Hea;Lim, Eun-Mee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effects of Gardeniae Fructus Water Extract (GF) on the production of inflammatory mediators in RAW 264.7 cell treated with lipopolysaccharide (LPS). Methods: Gradeniae Fructus was extracted with distilled water (2,000 ml) for 2 hours. In order to evaluate cytotoxicity of GF, 3 - (4,5-dimethylthiazol-2-yl) - 2,5 - diphenyltetrazolium bromide (MTT) assay was performed. To investigate antiinflammatory effects, the concentration of nitric oxide (NO) was measured with No assay, calcium (Ca) was measured with Fluo-4 Ca assay, and cytokine was measured by Bio-Plex cytokine assay in RAW 264.7 cell. And when p-value is below 0.05, it is judged to have the significant difference statistically. Results: 1. GF did not show any cytotoxicity. 2. GF suppressed the production of NO and Ca at the concentration of 25, 50, 100 and $200{\mu}g/ml$. 3. GF suppressed the production of interleukin (IL)-$1{\beta}$, IL-10, IL-12p40, macrophage-colony stimulating factor (M-CSF), macrophage inflammatory protein (MIP)-$1{\beta}$ and keratinocyte chemoattractant(KC) at the concentration of 25, 50, 100 and $200{\mu}g/ml$. 4. GF suppressed the production of vascular endothelial growth factor (VEGF), granulocyte-colony stimulating factor (G-CSF) and monocyte cheomattractant protein (MCP)-1 at the concentration of 25, 50 and $100{\mu}g/ml$. 5. GF suppressed the production of granulocyte macrophage-colony stimulating factor (GM-CSF) and regulated on activation, normal T cell expressed and secreted (RANTES) at the concentration of 25 and $50{\mu}g/ml$. 6. GF suppressed the production of MIP-2 at the concentration of 50 and $100{\mu}g/ml$, and tumor necrosis factor (TNF)-${\alpha}$ at the concentration of 50 and $200{\mu}g/ml$. Conclusions: These results suggest that GF has anti-inflammatory effect and immuno-modulating activity.

Production of transgenic cattle by somatic cell nuclear transfer (SCNT) with the human granulocyte colony-stimulation factor (hG-CSF)

  • Carvalho, Bruno P.;Cunha, Andrielle T.M.;Silva, Bianca D.M.;Sousa, Regivaldo V.;Leme, Ligiane O.;Dode, Margot A.N.;Melo, Eduardo O.
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.61-68
    • /
    • 2019
  • The hG-CSF (human Granulocyte Colony-Stimulating Factor) is a growth and stimulation factor capable of inducing the proliferation of bone marrow cells, several types of leukocytes, among other hematopoietic tissue cells. hG-CSF is used in used to treat anomalies that reder a small number of circulating white blood cells, which may compromise the immune defenses of the affected person. For these reasons, the production of hG-CSF in a bioreactor system using the mammary gland of genetic modified animals is a possibility of adding value to the bovine genetic material and reducing the costs of hG-CSF production in pharmaceutical industry. In this study, we aimed the production of transgenic hG-CSF bovine through the lipofection of bovine primary fibroblasts with an hG-CSF expression cassette and cloning these fibroblasts by the somatic cell nuclear transfer (SCNT) technique. The bovine fibroblasts transfected with the hG-CSF cassette presented a stable insertion of this construct into their genome and were efficiently synchronized to G0/G1 cell cycle stage. The transgenic fibroblasts were cloned by SCNT and produced 103 transferred embryos and 2 pregnancies, one of which reached 7 months of gestation.

Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide

  • Han, Jiahong;Xia, Jing;Zhang, Lianxue;Cai, Enbo;Zhao, Yan;Fei, Xuan;Jia, Xiaohuan;Yang, He;Liu, Shuangli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.618-624
    • /
    • 2019
  • Background: Ginsenoside Re (Re) is one of the major components of Panax ginseng Meyer. Ginsenoside $Rk_3$ ($Rk_3$) is a secondary metabolite of Re. The aim of this study was to investigate and compare the effects and underlying mechanisms of Re and $Rk_3$ on cyclophosphamide-induced myelosuppression. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide. Peripheral blood cells, bone marrow nucleated cells, and colony yield of hematopoietic progenitor cells in vitro were counted. The levels of erythropoietin, thrombopoietin, and granulocyte macrophage colony-stimulating factor in plasma were measured by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. The expression of apoptotic protein bcl-2, bax, and caspase-3 was detected by Western blotting. Results: Both Re and $Rk_3$ could improve peripheral blood cells, bone marrow nucleated cell counts, thymus index, and spleen index. Furthermore, they could enhance the yield of colonies cultured in vitro and make the levels of granulocyte macrophage colony-stimulating factor, erythropoietin, and thrombopoietin normal, reduce the ratio of $G_0/G_1$ phase cells, and increase the proliferation index. Finally, Re and $Rk_3$ could upregulate the expression of bcl-2, whereas they could downregulate the expression of bax and caspase-3. Conclusion: Re and $Rk_3$ could improve the hematopoietic function of myelosuppressed mice. The effect of $Rk_3$ was superior to that of Re at any dose. Regulating the levels of cytokines, promoting cells enter the normal cell cycle, regulating the balance of bcl-2/bax, and inhibiting the expression of caspase-3 may be the effects of Re and $Rk_3$ on myelosuppression.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages (Lipopolysaccharide로 유발된 마우스 대식세포의 염증매개성 Cytokine 생성증가에 대한 참당귀 물추출물의 효능 연구)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.113-119
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the effects of Angelicae Gigantis Radix Water Extract(AG) on the production of proinflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide(LPS). Method : RAW 264.7 cells were cotreated with AG(50 and 100 ug/mL) and lipopolysaccharide(LPS; 1 ug/mL) for 24 hours. After 24 hour treatment, using Bead-based multiplex cytokine assay, concentrations of various cytokines such as interleukin(IL)-6, IL-$1{\beta}$, IL-10, tumor necrosis factor-alpha(TNF-${\alpha}$), granulocyte colony-stimulating factor(G-CSF), granulocyte macrophage colony-stimulating factor(GM-CSF), interferon inducible protein-10(IP-10), leukemia inhibitory factor(LIF), lipopolysaccharide-induced chemokine(LIX), monocyte chemoattractant protein-1(MCP-1), macrophage colony-stimulating factor(M-CSF), macrophage inflammatory protein(MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted(RANTES) and vascular endothelial growth factor(VEGF) were measured. Result : AG significantly inhibited LPS-induced production of TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, and M-CSF from LPS-stimulated RAW 264.7 cells at the concentrations of 50 and 100 ug/mL. AG significantly inhibited LPS-induced production of MIP-$1{\beta}$, MIP-2, GM-CSF, and IL-6 from LPS-stimulated RAW 264.7 cells at the concentrations of 50 ug/mL. AG significantly inhibited LPS-induced production of VEGF from LPS-stimulated RAW 264.7 cells at the concentrations of 100 ug/mL. But AG did not show any significant effect on the production of MCP-1, LIF, LIX, IP-10 and IL-$1{\beta}$ from LPS-induced RAW 264.7 cells. Conclusion : These results suggest that AG has anti-inflammatory effect related with its inhibition of proinflammatory mediators such as TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, MIP-$1{\beta}$, MIP-2, GM-CSF, IL-6, VEGF and M-CSF in LPS-induced macrophages.

Severe congenital neutropenia mimicking chronic idiopathic neutropenia: a case report

  • Juhyung Kim;Soyoon Hwang;Narae Hwang;Yeonji Lee;Hee Jeong Cho;Joon Ho Moon;Sang Kyun Sohn;Dong Won Baek
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.3
    • /
    • pp.283-288
    • /
    • 2023
  • Severe chronic neutropenia is classified as severe congenital, cyclic, autoimmune, or idiopathic. However, there is a lot of uncertainty regarding the diagnosis of severe congenital neutropenia (SCN) and chronic idiopathic neutropenia, and this uncertainty affects further evaluations and treatments. A 20-year-old man presented with fever and knee abrasions after a bicycle accident. On admission, his initial absolute neutrophil count (ANC) was 30/µL. He had no medical history of persistent severe neutropenia with periodic oscillation of ANC. Although his fever resolved after appropriate antibiotic therapy, ANC remained at 80/µL. Bone marrow (BM) aspiration and biopsy were performed, and a BM smear showed myeloid maturation arrest. Moreover, genetic mutation test results showed a heterozygous missense variant in exon 4 of the neutrophil elastase ELANE: c597+1G>C (pV190-F199del). The patient was diagnosed with SCN. After discharge, we routinely checked his ANC level and monitored any signs of infection with minimum use of granulocyte colony-stimulating factor (G-CSF), considering its potential risk of leukemic transformation. Considering that SCN can be fatal, timely diagnosis and appropriate management with G-CSF are essential. We report the case of a patient with SCN caused by ELANE mutation who had atypical clinical manifestations. For a more accurate diagnosis and treatment of severe chronic neutropenia, further studies are needed to elucidate the various clinical features of ELANE.

The Effect of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on The Expression of IL-1 System mRNA in Mouse Embryos

  • Kim, D. H.;S. S. Ko;Lee, H. C.;Lee, H. H.;Kim, S. S.;Lee, H. J.;B. C. Yang;Park, S. B.;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.52-52
    • /
    • 2003
  • Granulocyte-macrophage colony stimulating factor (GM-CSF) is synthesized in the female reproductive tract and has been shown to play an important role in human and murine embryo development and implantation. However, the mechanism of GM-CSF on the embryo development is unknown. Recent studies suggested that GM-CSF may be increase the expression of implantation relented genes, such as interleukin-1 (IL-1) system. Our aim of this study was to compare the interleukin-1$\alpha$ (IL-1$\alpha$), interleukin-1$\beta$ (IL-1$\beta$) and interleukin-1 receptor antagonist (IL-lra) mRNA between the GM-CSF supplemented group and control group in mouse embryos. Mouse 2-cell embryos were cultured in P-1 medium supplemented with or without mouse GM-CSF (10 ng/ml). The number of total and apoptotic cell in blastocyst were assessed by TUNEL. And then, the expression of IL-1$\alpha$, IL-1$\beta$ and IL-1ra mRNA in blastocyst were examined by RT-PCR.

  • PDF

Therapeutic Effect of Different Doses of Recombinant Human Granulocyte Colony-Stimulating Factor(rhG-CSF) on Neonatal Sepsis Complicated by Neutropenia (호중구 감소증이 합병된 신생아 패혈증에서 Recombinant Human Granulocyte Colony-Stimulating Factor(rhG-CSF)의 투여 용량에 따른 치료 효과)

  • Choi, Moon Young;Jung, Yeon Sook;Son, Dong Woo;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.4
    • /
    • pp.439-448
    • /
    • 2002
  • Purpose : The aim of this study is to determine and compare the effects of adjunctive therapy with different doses of recombinant human granulocyte-colony stimulating factor(rhG-CSF) on reversing sepsis-associated neonatal neutropenia, and their survival rate in a group I/II-type trial. Methods : RhG-CSF was injected subcutaneously to 10 septic-neutropenic neonates with doses of $10{\mu}g/kg$ from Oct. 1995 to Sep. 1996, and was administered to another 12 septic-neutropenic neonates with doses of $5{\mu}g/kg$ from Oct. 1996 to Sep. 1997. Neutrophilic responses and the outcomes of both groups were compared. Results : In the rhG-CSF $10{\mu}g/kg$ treated group and in the $5{\mu}g/kg$ treated group, the absolute neutrophil count(ANC) was $1,065{\pm}89$($mean{\pm}SEM$) and $1,053{\pm}131$, respectively. The only difference between the two groups was the peak ANC at 48 hours. Eight patients from the remaining nine of rhG-CSF $10{\mu}g/kg$ treated group(88.9%) and ten in $5{\mu}g/kg$ treated group(83.3%) survived the sepsis and were discharged without any problems. Conclusions : RhG-CSF can increase the neutrophil count in critically ill septic neutropenic neonats. The survival rate of both groups were up to 90%. This finding suggests that both doses of rhG-CSF may be effective in a therapeutically useful time frame to treat septic neonates with neonatal neutropenia attributable to bone marrow supression or neutrophil consumption.