• Title/Summary/Keyword: Granite Weathered Soil

Search Result 260, Processing Time 0.032 seconds

Yielding Curve of Isotropic and Anisotropic Consolidated Compacted Weathered Granite Soil (등방 및 비등방 압밀된 다짐풍화화강토의 항복곡선)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.103-115
    • /
    • 2002
  • During this study, various stress path tests in previous isotropic and anisotropic (compression and tension) stress histories are performed on weathered granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from various stress-strain curves(stress ratio-shear strain, volumetric strain, normalized energy and dissipated total energy curves). The shape and characteristics of isotropic and anisotropic yielding curves are examined. The main results are summarized as follows . 1) Yielding curries defined from stress ratio - normarized energy and dissipated total energy curves show almost perfect ellipse. 2) Directions of plastic strain incremental vector are not perpendicular to yielding curve. 3) Normarized energy and dissipated total energy spread with similar tendency with respect to yielding currie in stress space.

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis

  • Yoon, Seok;Lee, Seung-Rae;Kim, Yun-Tae;Go, Gyu-Hyun
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • Saturated soil hydraulic conductivity is a very important soil parameter in numerous practical engineering applications, especially rainfall infiltration and slope stability problems. This parameter is difficult to measure since it is very highly sensitive to various soil conditions. There have been many analytical and empirical formulas to predict saturated soil hydraulic conductivity based on experimental data. However, there have been few studies to investigate in-situ hydraulic conductivity of weathered granite soils, which constitute the majority of soil slopes in Korea. This paper introduces an estimation method to derive saturated hydraulic conductivity of Korean weathered granite soils using in-situ experimental data which were obtained from a variety of slope areas of South Korea. A robust regression analysis was performed using different physical soil properties and an empirical solution with an $R^2$ value of 0.9193 was suggested. Besides that this research validated the proposed model by conducting in-situ saturated soil hydraulic conductivity tests in two slope areas.

Characteristics of the transitional element contents for the ginsengs from the 3 different soils of Keumsan (금산의 서로 다른 3 토양내에 생육되는 인삼의 전이원소 함량 특성)

  • Song, Suck-Hwan;Min, Eil-Sik;Park, Gwan-Su;Yoo, Sun-Kyun
    • Journal of Ginseng Research
    • /
    • v.29 no.4
    • /
    • pp.192-205
    • /
    • 2005
  • This study is for geochemical relationships between ginsengs and soils from three representative soil types from Keumsan, shale, phyllite and granite areas. For this study, ginsengs (2, 3 and 4 years), with the soils and their host rock, are collected and are analysed for the transitional elements. In the weathered soils, the shale area is high in the most of elements, but low in the granite area. High correlation relationships are shown in the shale area. In the field soils, the shale area is mainly high, but low in the granite area. Comparing with ages, most of elements are high in the 2 year soils, but low in the 4 year soils. Regardless of the localities, positive and negative correlations are dominant in the shale area. In the host rocks, high element contents are shown in the phyllite and shale areas. Positive and negative correlations are found in the shale and phyllite areas for large numbers of the element pairs. In the ginsengs, differences of the element contents with ages are not clear, but show high element contents in the 2 year ginsengs of the shale and phyllite areas, and low contents in the 4 year ginsengs of the granite area. Positive correlations are shown in the Cu-Zn pair in the shale and phyllite areas, and Co-Cu pair in the granite area. In the relative ratios(weathered soil/field soil), most of elements from the shale area are high, above I, suggesting high element contents in the weathered soils of the shale area relative to the granite and phyllite areas. In the relative ratios(weathered soil/host rock), most of elements are above 1, suggesting the high element contents in the weathered soils relative to the host rocks. Relative ratios (soil/ginseng) of the element contents are several to ten times. Regardless of the areas, big differences of the relative ratios are found in the Co and small differences are in the Cu and Zn, which suggest that differences between soils and ginsengs are big in the Co contents and small in the Cu and Zn contents. Regardless of the ages, differences among relative ratios are small in granite area relative to the shale area, which suggest more similar contents between ginsengs and soils in the granite areas.

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Effects of Soil-cement Stabilization about the Song-I in Cheju Province (제주도"송이"의 시멘트안정처리 효과에 관하여)

  • 신광식;도덕현;이성태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.4
    • /
    • pp.53-59
    • /
    • 1981
  • This experiment was carried out to find out the effectiveness of soil cement stabilization about the Song-I in Cheju province. The results are summarized as follows; 1.The increasing ratio of unconfined compressive strength according to the increment of cement content was markedly low compared with the weathered granite soil, so the effect of stabilization was low. 2.The moisture content of the sample of Song-I indicates the maximum unconfined compressive strength showed at the 5% or so of dry side than the optimum moisture content and the change of the unconfined compressive strength according to the change of moisture content was not sensitive compared with the weathered granite soil. 3.Generally the primary strength of curing age within 7 days of the sulfate resisting cement was low compared with the normal portland cement and the strength of 28 curing days showed a similar tendency, especially in case of Song-I, and it seemed that the sulfate resisting cement was a little more effective than the normal portland cement. 4.As the unconfined compressive strength of grain size controlled Song-I was low compared with the weathered granite soil, so the rate of weight loss by the durability test was great, therefore it was thought that the durability was weak.

  • PDF

Mechanical Characteristics of Weathered Granite Soils for Degree of Weathering and Saturation (풍화도과 포화도에 따른 화강토의 역학적 특성)

  • Lim, Seongyoon;Song, Changseob;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.93-100
    • /
    • 2015
  • The object of this paper is to study the shear characteristics of the weathered granite soil. To this end, a series of consolidated undrained triaxial compression tests are carried out to investigate the shear parameters-cohesion and internal friction angle-for the degree of saturation and degree of weathering. From the results, it is found that the shear parameters of weathered granite soil are influenced on the degree of saturation, degree of weathering and disturbance. Especially, internal friction angle is more influenced on the upper factors than cohesion. And shear parameters are more acted on the degree of saturation than the degree of weathering in the test range. It is, therefore, recommended that must be considered the conditions of granite soil-degree of saturation, degree of weathering and disturbance etc-in case of the calculation of bearing capacity, stability analysis and other designs with shear parameters.

Experimental Study on the Permeability of Decomposed Granite Soil (마사토의 차수성에 관한 실험적 연구)

  • 이형수
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 1974
  • On the constructions of fill type dams, usually the constructions materials is desired to be obtained in vicinity ofthe dam sitc to justify economical feasilblity of the project. In the stability analysis of the dams, core parts takesa small fraction of the slip circle and main function of core is to decrease dam permeability. This paper shows results of various tests as physical properties, compactions (using single, double triple and four times of the tandard compaction energy) and the permeability tests. Single decomposed granite and mixed materials with clay soils were used in this test. And conclusions of these tests are as follows; 1. Criteira of weathering ratio should be caleulated by density measarment. 2. Permeability coefficient maiuly depends on th #200 sieve passing, and also passing soil quantities depends on the weathering condition of the soil. 3. It was established that low weathered decomposed granite can not be used for the core materials of the fill type dams. On the other hand, moderately weathered decomposed granite soil with particles could pass through #200 sieve in a quantity over 10%, could chieve permeability in a magnitude of $1{\times}10^{-5} cm/see$. 4. With the decomposed granite soil it is possible to perform three times larger compaction energy than the standard energy without any problems.

  • PDF

The Shear Strength Characteristics of Weathered Granite Soil in Unsaturated State (불포화(不飽和) 화강암질풍화토(花崗岩質風化土)의 전단강도(剪斷强度) 특성(特性))

  • Cho, Seong Seup;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.86-100
    • /
    • 1985
  • In order to investigate the strength characteristics of weathered granite soils in unsaturated state, the five physically different weathered granite soils and the common soil (sandy loam) were examined. The disturbed and the undisturbed material were prepared for triaxial compression test. The following conclusions were drawn from the study; 1. Dry density of the undisturbed soil samples was lower than maximum dry density determined from the compaction test and it showed the higher value at the well graded soil. 2. The failure strength of the samples decreased with the increase of moisture content of the soil and these results were highly pronounced at the common soil sample having a good cohesive property. 3. On weathered granite soils, the cohesion was lower measured and the internal friction angle highly, the decrease rate at internal friction angle with increase of moisture content of the soil was more significant than that of cohesion 4. The modulus of deformation of the samples decreased with increase of moisture content of the soil and these phenomena were highly pronounced at the weathered granite soils than common soil. 5. The failure strength of the samples increased with in crease of confining pressure and effect of confining pressure on failure strength was highly significant at the lower moisture content of the soil.

  • PDF