• Title/Summary/Keyword: Grand canonical Monte Carlo simulation

Search Result 13, Processing Time 0.028 seconds

Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

  • Lee, Eon-Ji;Chang, Rak-Woo;Han, Ji-Hyung;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.901-905
    • /
    • 2012
  • In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems.

Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon (흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구)

  • Son, Hae-Jeong;Lim, Young-Il;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1087-1094
    • /
    • 2008
  • This article presents a multi-scale simulation approach starting from the molecular level for the adsorption process development, specifically, in n-hexane adsorption on activated carbon. A grand canonical Monte-Carlo(GCMC) method is used for the prediction of adsorption isotherms of n-hexane on activated carbon at the molecular level. Geometric effects and hydrodynamic properties of the adsorption column are examined by means of the two dimensional CFD(computational fluid dynamics) simulation. The adsorption isotherms from the molecular simulation and the axial diffusivity from the CFD simulation are exploited for the process simulation where the elution curve of n-hexane is obtained. For the first moment(mean residence time) of the pulse-response with respect to temperature and flowrate, the process simulation results obtained from this three-steps multiscale simulation approach show a good agreement with experimental data within 20% of maximum difference. The multi-scale simulation approach addressed in this study will be useful to accelerate the adsorption process development, while reducing the number of experiments required.

Monte Carlo Simulation on the Adsorption Properties of Methane in Zeolite L

  • 문성두;Yoshimori Miyano
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 1997
  • The adsorption of methane in K+ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. The simulation results agreed fairly well with experimental ones. All methane molecules were located in the main channel, and the average potential of sorbate molecule was almost constant regardless of average number of molecules per unit cell and the amounts sorbed in zeolite.

Monte Carlo Simulation on Adsorption Properties of Benzene, Toluene, and p-Xylene in MCM-41

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2553-2559
    • /
    • 2012
  • The adsorption properties of benzene, toluene, p-xylene in MCM-41 with heterogeneous and cylindrical pore were studied using grand canonical ensemble Monte Carlo simulation. The simulated isotherms were compared with experimental ones, and the different adsorption behaviors in MCM-41 with pore diameters of 2.2 and 3.2 nm were investigated. The simulated adsorption amounts above the capillary-condensation pressure agreed with the experimental ones. The simulation results showed that most molecular planes were nearly parallel to the pore axis. This orientation was not affected by the molecular position in the pore. The molecular planes were nearly parallel to the pore surface for the adsorbate molecules close to the pore wall, and the molecules in the MCM-41 with the pore diameter of 3.2 nm were ordered along the pore axis.

Prediction of Adsorption Isotherms and Diffusivity on Activated Carbon for Persistent Organic Pollutant(2,3,7,8-TCDD) (활성탄 위에서 잔류성 유기 오염물질(2,3,7,8-TCDD)의 등온 흡착식 및 확산계수 예측)

  • Lim, Young-Il;Son, Hae-Jeong;Lee, Ohsung;Nam, Kyong-Soo;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.747-754
    • /
    • 2009
  • In this study, adsorption isotherms of o-DCB(ortho-dichlorobenzene) on an activated carbon heated at $1000^{\circ}C$ for 24 hours were obtained by experiment and were predicted by using molecular simulation. The initial molecular structure of the activated carbon was designed on the basis of its molecular formula and functional groups ratio measured experimentally. Then, the molecular structure was optimized using the COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field. The particle porosity, specific surface area, and particle density obtained from the optimized molecular structure of activated carbon were compared with those experimental data. The errors between experimental data and simulation results of the particle porosity, specific surface area, and particle density were shown as 7.6, 3.8, and 2.8%, respectively. Adsorption isotherms constants of o-DCB are calculated by the GCMC(grand canonical Monte Carlo) method in the optimized molecular structure of activated carbon. The simulation result of the adsorption isotherms showed an error of under 3%, compared to that of experimental data. Adsorption isotherms, adsorption heat and pore diffusivity of 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) was finally obtained in the same molecular structure of the activated carbon as used for o-DCB. Thus, adsorption characteristics of persistent organic pollutants on activated carbon, which are not easy to experimentally evaluate, are predicted by the molecular simulation.

Analysis of Adsorption Phenomena of Hydrogen on Carbon Nanotube usint Molecular Simulation (분자 모사를 이용한 탄소나노튜브의 수소 흡착 현상 분석)

  • Chun, Dong Hyuk;Moon, Jong-Ho;Kim, Hyun Uk;Park, Young Cheol;Lee, Tai-Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Molecular simulation was performed to evaluate the possibility of hydrogen storage of carbon nanotubes. The equilibrium state of hydrogen adsorbed on carbon nanotubes was simulated by grand canonical Monte Carlo method at constant temperature and pressure. The interaction energy between hydrogen molecule and carbon nanotube was calculated by Lennard-Jones potential model. According to the interaction energy calculated, more hydrogen molecules were adsorbed on the inside than the outside of nanotubes. Whereas the adsorption strength was higher outside than inside. Adsorption capacity was investigated for various temperature and pressure. The maximum capacity of carbon nanotube for hydrogen storage was 2.5wt% at 200 K and 200 bar.

Monte Carlo Simulation on the Adsorption Properties of Ethane and Propane in Zeolite L (제올라이트 L 중 에탄과 프로판의 흡착성질에 대한 몬테칼로 시뮬레이션)

  • Moon, Sung Doo;Choi, Dai Ung;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 1998
  • The adsorption of ethane and propane in $K^{+}$ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. $CH_3$ and $CH_2$ groups of sorbate molecule were considered as pseudoatoms in calculation of potential, and the bond lengths and bond angles within a molecule were fixed during simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. For ethane the simulation results agreed considerably well with experimental ones over a wide range of temperature. The average potential of sorbate molecule decreased slowly with the increase of amounts sorbed in zeolite.

  • PDF

A theoretical study of the adsorption characteristics of gaseous molecules on the carbonaceous adsorbent (탄소질 흡착제에 가스 상 분자의 흡착 특성에 대한 이론적 연구)

  • Shin, Chang-Ho;Lee, Young-Taeg;Kim, Chung-Ryul;Kim, Seung-Joon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.309-319
    • /
    • 2005
  • The adsorption characteristics of gaseous molecules on the carbonaceous adsorbent have been investigated at various temperature and pressure with different pore sizes using Grand Canonical Monte Carlo (GCMC) simulation method. The geometrical parameters and spectroscopic properties of adsorbates have been computed using density functional theory (DFT). At higher temperatures is the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, the adsorption amount of adsorbates on the carbonaceous adsorbent is increased in the order $NH_3$ < $H_2S$ < $CH_3SH$, and this result is qualitatively in good agreement with the experimental observation.

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.