DOI QR코드

DOI QR Code

Analysis of Adsorption Phenomena of Hydrogen on Carbon Nanotube usint Molecular Simulation

분자 모사를 이용한 탄소나노튜브의 수소 흡착 현상 분석

  • Received : 2013.01.24
  • Accepted : 2014.04.17
  • Published : 2014.06.30

Abstract

Molecular simulation was performed to evaluate the possibility of hydrogen storage of carbon nanotubes. The equilibrium state of hydrogen adsorbed on carbon nanotubes was simulated by grand canonical Monte Carlo method at constant temperature and pressure. The interaction energy between hydrogen molecule and carbon nanotube was calculated by Lennard-Jones potential model. According to the interaction energy calculated, more hydrogen molecules were adsorbed on the inside than the outside of nanotubes. Whereas the adsorption strength was higher outside than inside. Adsorption capacity was investigated for various temperature and pressure. The maximum capacity of carbon nanotube for hydrogen storage was 2.5wt% at 200 K and 200 bar.

탄소나노튜브의 수소 저장소로써의 가능성을 평가하기 위한 분자 모사를 수행하였다. 일정한 온도와 압력에서 Grand canonical Monte Carlo 방법을 적용하여 탄소나노튜브에 수소가 흡착된 평형 상태를 구현하였다. Lennard-Jones 퍼텐셜 모델로부터 탄소나노튜브와 수소 분자 간 상호 작용 에너지를 계산 한 결과에 의하면 수소 분자는 나노튜브 외부보다 내부에 많은 양이 흡착되는 반면 흡착 강도는 외부가 높은 것으로 나타났다. 여러 가지 온도와 압력에 대해 흡착율을 검토하였으며, 200 K와 200 bar의 저온 고압 조건에서 약 2.5wt%의 흡착율을 나타내었다.

Keywords

References

  1. Hynek, W.F., Bentley, J.: "Hydrogen Storage by Carbon Sorption", International Journal of Hydrogen Energy, 22, 601 (1997)
  2. 남승훈, 이윤희, 이해무, 백운봉, 정인현, 박종서, 장훈식, 이석철, "액화수소 저장용기 안전성 평가 기술 개발 현황", 한국에너지공학회 2011년도 추계 학술발표회 (2011)
  3. Sakintuna, B., Darkrim F.L., Hirscher M.: "Metal hydride materials for solid hydrogen storage", International Journal of Hydrogen Energy: A Review, 32, 1121 (2007) https://doi.org/10.1016/j.ijhydene.2006.11.022
  4. Lee, H., Lee, J., Kim, D.Y., Park, J., Seo, Y.T., Zeng, H., Moudrakovski, I.L., Ratcliffe, C.I., Ripmeester, J.A.: "Tuning Clathrate Hydrates for Hydrogen Storage", Nature, 434, 743 (2005) https://doi.org/10.1038/nature03457
  5. Chun, D.H., Lee, T.: "Molecular Simulation of Cage Occupancy and Selectivity of Binary THF-H2 sII Hydrate", Molecular Simulation, 34, 837 (2008) https://doi.org/10.1080/08927020802301946
  6. Rosi, N.R., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O'Keeffe, M., Yaghi, O.M.: "Hydrogen Storage in Microporous Metal-Organic Frameworkds", Science, 300, 1127 (2003) https://doi.org/10.1126/science.1083440
  7. Baddour, C.E., Briens, C.: "Carbon Nanotube Synthesis: A Review", International Journal of Chemical Reactor Engineering, 3, Published Online (2005)
  8. Ye, Y., Ahn, C.C., Witham, C., Fultz, B.: "Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes", Applied Physics Letters, 74, 2307 (1999) https://doi.org/10.1063/1.123833
  9. Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S.: "Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature", Science, 286, 1127 (1999) https://doi.org/10.1126/science.286.5442.1127
  10. Wang, Q., Johnson, J.K.: "Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption", Journal of Physical Chemistry B, 103, 4809 (1999) https://doi.org/10.1021/jp9900032
  11. Yin, Y.F., Mays, T., McEnaney, B.: "Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays", Langmuir, 16, 10521 (2000) https://doi.org/10.1021/la000900t
  12. Darkrim, F., Levesque, D.: "High Adsorptive Property of Opened Carbon Nanotubes at 77K", Journal of Physical Chemistry B, 104, 6773 (2000) https://doi.org/10.1021/jp0006532
  13. Dillon, A.C., Gilbert, K.E.H., Parilla, P.A., Alleman, J.L., Hornyak, G.L., Jones, K.M., Heben, M.J.: "Hydrogen Storage in Carbon Single-Wall Nanotubes", Proceedings of The 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405 (2002)
  14. Shiraishi, M., Takenobu, T., Kataura, H., Ata, M.: "Hydrogen Adsorption and Desorption in Carbon Nanotube Systems and Its Mechanisms", Applied Physics A, 78, 947 (2004) https://doi.org/10.1007/s00339-003-2413-0
  15. Muniz, A.R., Meyyappan, M., Maroudas, D.: "On The Hydrogen Storage Capacity of Carbon Nanotube Bundles", Applied Physics Letters, 95, 163111 (2009) https://doi.org/10.1063/1.3253711
  16. Maruyama, S., Kimura, T.: "Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotubes", 2000 ASME International Mechanical Engineering Congress and Exhibit, Orland, November 5-11 (2000)
  17. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Oxford, New York (1987)
  18. Reed, T.M., Gubbins, K.E.: Applied Statistical Mechanics, McGraw-Hill, New York (1973)
  19. Lachet, V., Boutin, A., Tavitian, B., Fuchs, A.H.: "Grand Canonical Monte Carlo Simulations of Adsorption of Mixture of Xylene Molecules in Faujasite Zeolites", Faraday Discussions, 106, 307 (1997) https://doi.org/10.1039/a701490b