DOI QR코드

DOI QR Code

Monte Carlo Simulation on Adsorption Properties of Benzene, Toluene, and p-Xylene in MCM-41

  • Received : 2012.03.10
  • Accepted : 2012.05.03
  • Published : 2012.08.20

Abstract

The adsorption properties of benzene, toluene, p-xylene in MCM-41 with heterogeneous and cylindrical pore were studied using grand canonical ensemble Monte Carlo simulation. The simulated isotherms were compared with experimental ones, and the different adsorption behaviors in MCM-41 with pore diameters of 2.2 and 3.2 nm were investigated. The simulated adsorption amounts above the capillary-condensation pressure agreed with the experimental ones. The simulation results showed that most molecular planes were nearly parallel to the pore axis. This orientation was not affected by the molecular position in the pore. The molecular planes were nearly parallel to the pore surface for the adsorbate molecules close to the pore wall, and the molecules in the MCM-41 with the pore diameter of 3.2 nm were ordered along the pore axis.

Keywords

References

  1. Zhao, X. S.; Lu, G. Q.; Millar, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075. https://doi.org/10.1021/ie950702a
  2. Selvam, P.; Bhatia, S. K.; Sonwane, C. G. Ind. Eng. Chem. Res. 2001, 40, 3237. https://doi.org/10.1021/ie0010666
  3. Bhattacharyya, S.; Lelong, G.; Saboungi, M.-L. J. Exp. Nanosci. 2006, 1, 375. https://doi.org/10.1080/17458080600812757
  4. Marschall, R.; Tolle, P.; Cavalcanti, W. L.; Wilhelm, M.; Kohler, C.; Frauenheim, T.; Wark, M. J. Phys. Chem. C 2009, 113, 19218. https://doi.org/10.1021/jp904322y
  5. Takahara, S.; Sumiyama, N.; Kittaka, S.; Yamaguchi, T.; Bellissent-Funel, M.-C. J. Phys. Chem. B 2005, 109, 11231. https://doi.org/10.1021/jp046036l
  6. Yun, J.-H.; Duren, T.; Keil, F. J.; Seaton, N. A. Langmuir 2002, 18, 2693.
  7. He, Y.; Seaton, N. A. Langmuir 2003, 19, 10132. https://doi.org/10.1021/la035047n
  8. Koh, C. A.; Montanari, T.; Nooney, R. I.; Tahir, S. F.; Westacott, R. E. Langmuir 1999, 15, 6043. https://doi.org/10.1021/la9814337
  9. Cao, D.; Shen, Z.; Chen, J.; Zhang, X. Microporous and Mesoporous Mater. 2004, 67, 159. https://doi.org/10.1016/j.micromeso.2003.11.001
  10. Fox, J. P.; Bates, S. P. Langmuir 2005, 21, 4746. https://doi.org/10.1021/la047318f
  11. Moon, S. D.; Choi, D. W. Korean J. Chem. Eng. 2009, 26, 1098. https://doi.org/10.1007/s11814-009-0183-x
  12. Snurr, R. Q.; Bell, A. T.; Theodorou, D. N. J. Phys. Chem. 1993, 97, 13742. https://doi.org/10.1021/j100153a051
  13. Rungsirisakun, R.; Nanok, T.; Probst, M.; Limtrakul, J. J. Mol. Graph. Model. 2006, 24, 373. https://doi.org/10.1016/j.jmgm.2005.10.003
  14. Contreras-Camacho, R. O.; Ungerer, P.; Boutin, A.; Mackie, A. D. J. Phys. Chem. B 2004, 108, 14109. https://doi.org/10.1021/jp048693j
  15. MOPAC (ChemBio3D Ultra ver. 11.0); CambridgeSoft: Cambridge, MA, 2008.
  16. Carrott, M. M. L. R.; Candeias, A. J. E.; Carrott, P. J. M.; Ravikovitch, P. I.; Neimark, A. V.; Sequeira, A. D. Microporous and Mesoporous Mater. 2001, 47, 323. https://doi.org/10.1016/S1387-1811(01)00394-8
  17. Ravikovitch, P. I.; Vishnyakov, A.; Neimark, A. V.; Carrott, M. M. L. R.; Russo, P. A.; Carrott, P. J. Langmuir 2006, 22, 513. https://doi.org/10.1021/la052202k
  18. Coasne, B.; Pellenq, R. J.-M. J. Chem. Phys. 2004, 120, 2913. https://doi.org/10.1063/1.1632897
  19. Zhuo, S.; Huang, Y.; Hu, J.; Liu, H.; Hu, Y.; Jiang, J. J. Phys. Chem. C 2008, 112, 11295. https://doi.org/10.1021/jp803428n
  20. Puibasset, J. Langmuir 2009, 25, 903. https://doi.org/10.1021/la802474c
  21. Gupta, A.; Clark, L. A.; Snurr, R. Q. Langmuir 2000, 16, 3910. https://doi.org/10.1021/la990756f
  22. Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 1999.
  23. Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. E. Langmuir 2009, 25, 10648. https://doi.org/10.1021/la900984z
  24. Lide, D. R.; Kehiaian, H. V. CRC Handbook of Thermophysical and Thermochemical Data; CRC Press: Boca Raton, 1994.
  25. Alba-Simionesco, C.; Dosseh, G.; Dumont, E.; Frick, B.; Geil, B.; Morineau, D.; Teboul, V.; Xia, Y. Eur. Phys. J. E. 2003, 12, 19. https://doi.org/10.1140/epje/i2003-10055-1

Cited by

  1. Confinement Effects on the Benzene Orientational Structure vol.130, pp.17, 2018, https://doi.org/10.1002/ange.201713115
  2. Confinement Effects on the Benzene Orientational Structure vol.57, pp.17, 2018, https://doi.org/10.1002/anie.201713115