• Title/Summary/Keyword: Gram positive

Search Result 1,531, Processing Time 0.033 seconds

Characterization of Interphase Microbial Community in Luzhou-Flavored Liquor Manufacturing Pits of Various Ages by Polyphasic Detection Methods

  • Li, Hui;Huang, Jun;Liu, Xinping;Zhou, Rongqing;Ding, Xiaofei;Xiang, Qianyin;Zhang, Liqiang;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.130-140
    • /
    • 2017
  • It is vital to understand the changing characteristics of interphase microbial communities and interspecies synergism during the fermentation of Chinese liquors. In this study, microbial communities in the three indispensable phases (pit mud, zaopei, and huangshui) of Luzhou-flavored liquor manufacturing pits and their shifts during cellars use were first investigated by polyphasic culture-independent approaches. The archaeal and eubacterial communities in the three phases were quantitatively assessed by combined phospholipid ether lipids/phospholipid fatty acid analysis and fluorescence in situ hybridization. In addition, qualitative information regarding the microbial community was analyzed by PCR-denaturing gradient gel electrophoresis. Results suggested that the interphase microbial community profiles were quite different, and the proportions of specific microbial groups evolved gradually. Anaerobic bacteria and gram-positive bacteria were dominant and their numbers were higher in pit mud ($10^9$ cells/g) than in huangshui ($10^7$ cells/ml) and zaopei ($10^7$ cells/g). Hydrogenotrophic methanogenic archaea were the dominant archaea, and their proportions were virtually unchanged in pit mud (around 65%), whereas they first increased and then decreased in zaopei (59%-82%-47%) and increased with pit age in huangshui (82%-92%). Interactions between microbial communities, especially between eubacteria and methanogens, played a key role in the formation of favorable niches for liquor fermentation. Furthermore, daqu (an essential saccharifying and fermentative agent) and metabolic regulation parameters greatly affected the microbial community.

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression

  • Ouyang, Ping;Sun, Mao;He, Xuewen;Wang, Kaiyu;Yin, Zhongqiong;Fu, Hualin;Li, Yinglun;Geng, Yi;Shu, Gang;He, Changliang;Liang, Xiaoxia;Lai, Weiming;Li, Lixia;Zou, Yunfeng;Song, Xu;Yin, Lizi
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

In Vivo Wound Healing Activity of Crocodile (Crocodylus siamensis) Hemoglobin and Evaluation of Antibacterial and Antioxidant Properties of Hemoglobin and Hemoglobin Hydrolysate

  • Pakdeesuwan, Anawat;Araki, Tomohiro;Daduang, Sakda;Payoungkiattikun, Wisarut;Jangpromma, Nisachon;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The hydrolysis of proteins constitutes an invaluable tool, granting access to a variety of peptide fragments with potentially interesting biological properties. Therefore, a hemoglobin (Hb) hydrolysate of Crocodylus siamensis was generated by digestion under acidic conditions. The antibacterial and antioxidant activities of the Hb hydrolysate were assessed in comparison with intact Hb. A disc diffusion assay revealed that the Hb hydrolysate exhibited antibacterial activity against eight strains of gram-positive bacteria and showed a higher efficacy than intact Hb. Moreover, the antioxidant activity of intact Hb and its hydrolysate was evaluated using ABTS and DPPH radical scavenging assays. The Hb hydrolysate exhibited free radical scavenging rates of 6-32%, whereas intact Hb showed a slightly higher activity. In addition, non-toxicity to human erythrocytes was observed after treatment with quantities of Hb hydrolysate up to $10{\mu}g$. Moreover, active fragmented Hb (P3) was obtained after purifying the Hb hydrolysate by reversed-phase HPLC. Scanning electron microscopy demonstrated the induction of bacterial cell membrane abnormalities after exposure to P3. Antibacterial and antioxidant activities play crucial roles for supporting the wound healing activity. Consequently, an in vivo mice excisional skin wound healing assay was carried out to investigate the effects of intact Hb treatment on wound healing in more detail. The results clearly demonstrate that intact Hb is capable of promoting 75% wound closure within 6 days. These findings imply that intact Hb of C. siamensis and its acid hydrolysate may serve as valuable precursors for food supplementary products benefitting human health.

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Sphingobacterium composti sp. nov., a Novel DNase-Producing Bacterium Isolated from Compost

  • Ten Leonid N.;Liu, Qing-Mei;Im Wan-Taek;Aslam Zubair;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1728-1733
    • /
    • 2006
  • A Gram-negative, strictly aerobic, nonmotile, and nonspore-forming bacterial strain, designated $T5-12^T$, was isolated from compost and characterized using a polyphasic taxonomical approach. The isolate was positive for catalase and oxidase tests. It could degrade DNA, but was negative for degradation of macromolecules such as casein, collagen, starch, chitin, cellulose, and xylan. The DNA G+C content was 36.0 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $iso-C_{15:0}$ (45.6%), $iso-C_{17:0}$ 3OH (17.2%), and summed feature 4 ($C_{16:0}\;{\omega}7c$ and/or $iso-C_{15:0}$ 2OH, 14.9%). Comparative 16S rRNA gene sequence analysis showed that strain $T5-12^T$ fell within the radiation of the cluster comprising members of the genus Sphingobacterium. Strain $T5-12^T$ exhibited lower than 94% of 16S rRNA gene sequence similarity with respect to the type strains of recognized Sphingobacterium species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain $T5-12^T$ ($=KCTC\;12578^T=LMG\;23401^T=CCUG\;52467^T$) should be classified in the genus Sphingobacterium as the type strain of a novel species, for which the name Sphingobacterium composti sp. novo is proposed.

Bacteriocinogenic Potential of Newly Isolated Strains of Enterococcus faecium and Enterococcus faecalis from Dairy Products of Pakistan

  • Javed, Imran;Ahmed, Safia;Ali, Muhammad Ishtiaq;Ahmad, Bashir;Ghumro, Pir Bux;Hameed, Abdul;Chaudry, Ghulam Jilani
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • The present study was carried out for the isolation of bacteriocin-producing enterococci from indigenous sources. Gram-positive enterococci are known for having the ability to produce enterocins with good antimicrobial potential. A total of 34 strains were isolated from processed dairy products of Pakistan and seven out of them were found to be member of genus Enterococcus on selective enumeration. Biochemical and molecular characterization revealed that four of these isolates (IJ-03, IJ-07, IJ-11, and IJ-12) were Enterococcus faecalis and three (IJ-06, IJ-21, and IJ-31) were Enterococcus faecium. Local processed cheese was the source of all enterococcal isolates, except E. faecium IJ-21 and IJ-31, which were isolated from indigenous yoghurt and butter samples, respectively. Bacterial isolates were sensitive to commonly used antibiotics except methicillin and kanamycin. They also lacked critical virulence determinants, mainly cytolysin (cyl), gelatinase (gel), enterococcal surface protein (esp), and vancomycin resistance (vanA and vanB). Polymerase chain reaction amplification identified that enterocin A and P genes were present in the genome of E. faecium IJ-06 and IJ-21, whereas the E. faecium IJ-31 genome showed only enterocin P genes. No amplification was observed for genes that corresponded with the enterocins 31, AS-48, L50A, and L50B, and ent 1071A and 1071B. There were no signals of amplification found for E. faecalis IJ-11, indicating that the antimicrobial activity was because of an enterocin different from those checked by PCR. Hence, the indigenous bacterial isolates have great potential for bacteriocin production and they had antibacterial activity against a variety of closely related species.

A Clinical Observation on 55 Cases of Neonatal Sepsis (신생아 패혈증에 관한 임상적 고찰)

  • Park, Jae-Hong;Shin, Son-Moon
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.161-169
    • /
    • 1988
  • Neonatal sepsis is a frequent and important cause of morbidity and mortality in the neonatal period. This study was undertaken to observe the 55 cases of proven neonatal sepsis among 6,717 newborn infants under 4 weeks of age, admitted to the nursery of Yeungnam University Hospital from May 1, 1983 to April 30, 1988. We observed following results : 1. The morbidity rate of male(1.12%) was higher than that of female(0.44%) significantly (p<0.05). 2. The morbidity rate of prematurity(2.65%) was higher than that of full term(0.76%) significantly (p<0.05). 3. The incidence of perinatal obstetric complications in early onset neonatal sepsis was higher than that of late onset neonatal sepsis (38.5% vs 10.3%, p<0.05). 4. The common clinical manifestations were poor feeding(52.7%), jaundice(45.5%), diarrhea(30.9%) and irritability (30.9%). 5. Among the causative organisms, gram positive organisms were predominated and Staphylococcus epidermidis was the most common organism. There was no difference in the causative organisms between early onset and late onset sepsis.

  • PDF

Purification and Characterization of 2,4-Dichlorophenol Oxidizing Peroxidase from Streptomyces sp. AD001

  • Jeon, Jeong-Ho;Yun-Jon Han;Tae-Gu kang;Eung-Soo Kim;Soon-Kwang Hong;Byeong-Chul Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.972-978
    • /
    • 2002
  • Streptomyces sp. AD001 is a Gram-positive soil actinomycetes secreting an uncharacterized 2,4-dichlorophenol (DCP) oxidizing enzyme, whose activity is similar to the previously known Actinomycetes lignin-peroxidase (ALiP). This extracellular peroxidase was purified from Streptomyces sp. AD001 as a single protein band on an SDS-PACE by ammonium sulfate fractionation, Q-sepharose, concanavalin A, and Bio-Gel HTP column chromatographies. The molecular mass of the purified peroxidase was determined by SDS-PAGE to be 45.2 kDa, and 49.7 kDa with MALDI-TOF-MS, respectively. The highest level of peroxidase activity was observed at pH 7.5 and $30^{\circ}C$. The amino terminal sequence of the purified peroxidase (G-E-P-E-E-G-N-V-D-G-T-L) showed no significant homologies to my known proteins, suggesting that Streptomyces sp. AD001 may secrete a novel kind of bacterial peroxidase Initial rate kinetic data of the 2,4-DCP oxidation were best modeled with a random-binding bireactant system.

Characterization of ptsHI Operon from Leuconostoc mesenteroides SY1, a Strain Isolated from Kimchi

  • Park Jae-Yong;Jeong Seon-Ju;Chun Ji-Yeon;Lee Jong-Hoon;Chung Dae-Kyun;Kim Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.988-992
    • /
    • 2006
  • The ptsHI operon from Leuconostoc mesenteroides ssp. mesenteroides SY1 (L. mesenteroides SY1), a strain isolated from kimchi, was cloned and characterized. The ptsH open reading frame (ORF) was 273 bp in size, which can encode a protein of 90 amino acid residues with a molecular weight of 9,212 Da. The pfsI ORF was 1,719 bp in size, which was capable of encoding a protein of 572 amino acids with a molecular mass of 62,549 Da. ptsH and pfsI genes were transcribed as a single transcript of 2.0 kb in size regardless of carbon sources, supporting the operon structure. Although the deduced amino acid sequences of the HPr and EI were highly homologous with those of other Gram-positive bacteria, an additional amino acid (glutamine at the $3^{rd}$ amino acid) was present in HPr from L. mesenteroides SY1. Phosphorylation sites of HPr included the histidine residue ($16^{th}$) and serine residue ($47^{th}$). Mutant HPrs, in which each phosphorylation site was mutated into alanine, were obtained, and phosphorylation with HPr and mutated HPrs showed that HPr was phosphorylated at the serine residue ($47^{th}$) by HPr kinaseiphosphorylase (HPr K/P).

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.